Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:06:48.805Z Has data issue: false hasContentIssue false

The Effects of Radiation Feedback on Early Fragmentation and Stellar Multiplicity

Published online by Cambridge University Press:  27 April 2011

Stella S. R. Offner*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge MA 02138, USA email: soffner@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Forming stars emit a significant amount of radiation into their natal environment. While the importance of radiation feedback from high-mass stars is widely accepted, radiation has generally been ignored in simulations of low-mass star formation. I use ORION, an adaptive mesh refinement (AMR) three-dimensional gravito-radiation-hydrodynamics code, to model low-mass star formation in a turbulent molecular cloud. I demonstrate that including radiation feedback has a profound effect on fragmentation and protostellar multiplicity. Although heating is mainly confined within the core envelope, it is sufficient to suppress disk fragmentation that would otherwise result in low-mass companions or brown dwarfs. As a consequence, turbulent fragmentation, not disk fragmentation, is likely the origin of low-mass binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, F. C., Ruden, S. P., & Shu, F. H. 1989, ApJ, 347, 959CrossRefGoogle Scholar
Bate, M. R. 2009, MNRAS, 392, 1363CrossRefGoogle Scholar
Bonnell, I. A. & Bate, M. R. 1994, MNRAS, 269, L45CrossRefGoogle Scholar
Duchêne, G., Delgado-Donate, E., Haisch, K. E. Jr., Loinard, L., & Rodríguez, L. F. 2007, Protostars and Planets V, 379Google Scholar
Fisher, R. T. 2004, ApJ, 600, 769CrossRefGoogle Scholar
Goodwin, S. P., Whitworth, A. P., & Ward-Thompson, D. 2004, A&A, 414, 633Google Scholar
Kratter, K. M., Matzner, C. D., Krumholz, M. R., & Klein, R. I. 2010, ApJ, 708, 1585CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Klein, R. I. 2004, ApJ, 611, 399CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., McKee, C. F., & Bolstad, J. 2007, ApJ, 667, 626CrossRefGoogle Scholar
Lada, C. J. 2006, ApJL, 640, L63CrossRefGoogle Scholar
McKee, C. F., & Tan, J. C. 2003, ApJ, 585, 850CrossRefGoogle Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131CrossRefGoogle Scholar
Offner, S. S. R., Kratter, K. M., Matzner, C. D., Krumholz, M. R., & Klein, R. I. 2010, in prep.Google Scholar
Shu, F. H. 1977, ApJ, 214, 488CrossRefGoogle Scholar
Tohline, J. E. 2002, ARAA, 40, 349CrossRefGoogle Scholar