Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T23:16:18.741Z Has data issue: false hasContentIssue false

Evolution of ISM Contents of Massive Galaxies from z = 2 to 0.3

Published online by Cambridge University Press:  21 March 2013

Nick Scoville*
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA email: nzs@astro.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mass of ISM in high redshift Galaxies is a major determinant of their morphology, star formation activity and how they will evolve to low redshift. Measurement of the CO lines at z > 0.5 are time consuming, even with the sensitivity of ALMA, and the derived ISM masses are subject to uncertainty in the CO-to-H2 conversion factor. Here I describe a much faster technique— measuring the long wavelength Rayleigh-Jeans dust emission using the spectacular continuum sensitivity of ALMA. Using a metallicity-dependent gas-to-dust abundance ratio derived from studies of low-z galaxies, one then obtains the ISM mass. Initial results from our ALMA Cycle-0 observations are presented for a small sample of stellar-mass selected galaxies in COSMOS. This technique will enable measurement of 100's of galaxies at high-z with observations of typically ∼10 min per galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Clements, D. L., Dunne, L., & Eales, S. 2010. The submillimetre properties of ultraluminous infrared galaxies. MNRAS, 403 (Mar.), 274286.Google Scholar
Daddi, E., Bournaud, F., Walter, F., Dannerbauer, H., Carilli, C. L., Dickinson, M., Elbaz, D., Morrison, G. E., Riechers, D., Onodera, M., Salmi, F., Krips, M., & Stern, D. 2010. Very High Gas Fractions and Extended Gas Reservoirs in z = 1.5 Disk Galaxies. ApJ, 713(Apr.), 686707.CrossRefGoogle Scholar
Dale, D. A., et al. 2005. Infrared Spectral Energy Distributions of Nearby Galaxies. ApJ, 633(Nov.), 857870.CrossRefGoogle Scholar
Draine, B. T. & Li, A. 2007. Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era. ApJ, 657(Mar.), 810837.Google Scholar
Draine, B. T., Dale, D. A., Bendo, G., Gordon, K. D., Smith, J. D. T., Armus, L., Engelbracht, C. W., Helou, G., Kennicutt, R. C. Jr., Li, A., Roussel, H., Walter, F., Calzetti, D., Moustakas, J., Murphy, E. J., Rieke, G. H., Bot, C., Hollenbach, D. J., Sheth, K., & Teplitz, H. I. 2007. Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample. ApJ, 663(July), 866894.Google Scholar
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006. The Mass-Metallicity Relation at z = 2. ApJ, 644(June), 813828.Google Scholar
Galametz, M., Madden, S. C., Galliano, F., Hony, S., Bendo, G. J., & Sauvage, M. 2011. Probing the Dust Properties of Galaxies at Submillimetre Wavelengths II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies. ArXiv e-prints, Apr.CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Neri, R., Cox, P., Cooper, M. C., Shapiro, K., Bolatto, A., Bouché, N., Bournaud, F., Burkert, A., Combes, F., Comerford, J., Davis, M., Schreiber, N. M. F., Garcia-Burillo, S., Gracia-Carpio, J., Lutz, D., Naab, T., Omont, A. Shapley., Sternberg, A., & Weiner, B. 2010. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature, 463 (Feb.), 781784.CrossRefGoogle ScholarPubMed