Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T12:32:18.309Z Has data issue: false hasContentIssue false

Extrasolar planet interactions

Published online by Cambridge University Press:  01 October 2007

Rory Barnes
Affiliation:
Lunar and Planetary Lab, University of Arizona, 1629 E. University Blvd., Tucson, AZ, USA email: rory@lpl.arizona.edu
Richard Greenberg
Affiliation:
Lunar and Planetary Lab, University of Arizona, 1629 E. University Blvd., Tucson, AZ, USA email: rory@lpl.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical interactions of planetary systems may be a clue to their formation histories. Therefore, the distribution of these interactions provides important constraints on models of planet formation. We focus on each system's apsidal motion and proximity to dynamical instability. Although only ∼25 multiple planet systems have been discovered to date, our analyses in these terms have revealed several important features of planetary interactions. 1) Many systems interact such that they are near the boundary between stability and instability. 2) Planets tend to form such that at least one planet's eccentricity periodically drops to near zero. 3) Mean-motion resonant pairs would be unstable if not for the resonance. 4) Scattering of approximately equal mass planets is unlikely to produce the observed distribution of apsidal behavior. 5) Resonant interactions may be identified through calculating a system's proximity to instability, regardless of knowledge of angles such as mean longitude and longitude of periastron (e.g. GJ 317 b and c are probably in a 4:1 resonance). These properties of planetary systems have been identified through calculation of two parameters that describe the interaction. The apsidal interaction can be quantified by determining how close a planet is to an apsidal separatrix (a boundary between qualitatively different types of apsidal oscillations, e.g. libration or circulation of the major axes). This value can be calculated through short numerical integrations. The proximity to instability can be measured by comparing the observed orbital elements to an analytic boundary that describes a type of stability known as Hill stability. We have set up a website dedicated to presenting the most up-to-date information on dynamical interactions: http://www.lpl.arizona.edu/~rory/research/xsp/dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Artymowicz, P. 1992. PASP 104, 679.CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2006. ApJ 638, 478. (BG06a)CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2006. ApJ 647, L153. (BG06b)CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2006. ApJ 652, L53. (BG06c)CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2007. ApJ 659, L53. (BG07a)CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2007. ApJ 665, L67. (BG07b)CrossRefGoogle Scholar
Barnes, R. & Quinn, T.R. 2001. ApJ 550, 884.CrossRefGoogle Scholar
Barnes, R. & Quinn, T.R. 2004. ApJ 611, 494.CrossRefGoogle Scholar
Barnes, R. & Raymond, S.N. 2004. ApJ 617, 569.CrossRefGoogle Scholar
Bean, J. L. et al. 2008. ApJ 672, 1202.CrossRefGoogle Scholar
Boss, A. P. 2000. ApJ. 536, L101.CrossRefGoogle Scholar
Butler, R. P. et al. 2006. ApJ 646, 505.CrossRefGoogle Scholar
Chambers, J. E. 1999. MNRAS 304, 793.CrossRefGoogle Scholar
Chiang, E. I. & Murray, N. 2002. ApJ 576, 473.CrossRefGoogle Scholar
Cochran, W. D. et al. 2007. ApJ 665, 1407.CrossRefGoogle Scholar
Correia, A. C. M. et al. 2005. A&A 440, 751.Google Scholar
Cuntz, M. et al. 2007. ApJ 667, L105.CrossRefGoogle Scholar
D'Angelo, G., Lubow, S. H. & Bate, M. R. 2006. ApJ 652, 1698.CrossRefGoogle Scholar
David, E.-M. et al. 2003. PASP 115, 825.CrossRefGoogle Scholar
Érdi, B. et al. 2004. MNRAS 351, 1043.CrossRefGoogle Scholar
Ford, E. B., Havlikova, M., & Rasio, F. A. 2001. Icarus 150, 303.CrossRefGoogle Scholar
Ford, E. B., Lystad, V. & Rasio, F. A. 2005. Nature 434, 873.CrossRefGoogle Scholar
Gladman, B. 1993. Icarus 106, 247.CrossRefGoogle Scholar
Goldreich, P. & Sari, R. 2003. ApJ 585, 1024.CrossRefGoogle Scholar
Goździewski, K. 2002. A&A 393, 397.Google Scholar
Hadjidemetriou, J. D. 2006. CeMDA 95, 225.CrossRefGoogle Scholar
Holman, M. J. & Wiegert, P. A. 1999. AJ 117, 621.CrossRefGoogle Scholar
Kiseleva-Eggleton, L. et al. 2002. ApJ 578, L145.CrossRefGoogle Scholar
Laskar, J. 1990. Icarus 88, 266.CrossRefGoogle Scholar
Laughlin, G. & Adams, F. C. 1999. ApJ 526, 881.CrossRefGoogle Scholar
Lin, D. N. C. & Ida, S. 1997. ApJ 477, 781.CrossRefGoogle Scholar
Lovis, C. et al. 2006. Nature 441, 305.CrossRefGoogle Scholar
Malhotra, R. 2002. ApJ 575, L33.CrossRefGoogle Scholar
Marchal, C. & Bozis, G. 1982. CeMDA 26, 311.Google Scholar
Marcy, G. W. et al. 2005. ApJ 619, 570.CrossRefGoogle Scholar
Marzari, F. & Weidenschilling, S. 2002. Icarus 156, 570.CrossRefGoogle Scholar
Michtchenko, T. A. & Malhotra, R. 2004. Icarus 168, 237.CrossRefGoogle Scholar
Milani, A. & Nobili, A. M. 1983. CeMDA 31, 213.Google Scholar
Murray, C. D. & Dermott, S. F. 1999. Solar System Dynamics. Cambridge UP, Cambridge.Google Scholar
Papaloizou, J. C. B., Nelson, R. P. & Masset, F. 2001. A&A 366, 263.Google Scholar
Pepe, F. et al. 2007. A&A 462, 769.Google Scholar
Quillen, A. C. & Faber, P. 2006. MNRAS 373, 1245.CrossRefGoogle Scholar
Rasio, F. A. & Ford, E. B. 1996. Science 274, 954.CrossRefGoogle Scholar
Rasio, F. A. et al. 1996. ApJ 470, 1187.CrossRefGoogle Scholar
Raymond, S. N. & Barnes, R. 2005. ApJ 619, 549.CrossRefGoogle Scholar
Raymond, S. N., Barnes, R. & Kaib, N. A. 2006. ApJ 644, 1223.CrossRefGoogle Scholar
Rivera, E. J. & Lissauer, J. J. 2000. ApJ 530, 454.CrossRefGoogle Scholar
Sándor, Zs. et al. 2007. MNRAS 375, 1495.CrossRefGoogle Scholar
Sosnitskii, S. P. 1999. AJ 117, 3154.CrossRefGoogle Scholar
Stepinski, T. F., Malhotra, R. & Black, D. C. 2000. ApJ 545, 1044.CrossRefGoogle Scholar
Szebehely, V. & McKenzie, R. 1981 CeMDA 23, 3.Google Scholar
Udry, S. et al. 2007. A&A 469, L43.Google Scholar
Voyatzis, G. & Hadjidemetriou, J. D. 2006. CeMDA 95, 259.CrossRefGoogle Scholar
Weidenschilling, S. & Marzari, F. 1996. Nature 384, 619.CrossRefGoogle Scholar
Wisdom, J. 1982 AJ. 87, 577.CrossRefGoogle Scholar
Wright, J. T. et al. 2007. ApJ 657, 533.CrossRefGoogle Scholar
Zhou, J.-L. & Sun, Y.-S. 2003. ApJ 598, 1290.CrossRefGoogle Scholar