Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T17:40:16.787Z Has data issue: false hasContentIssue false

Forecasting Solar Energetic Particle Fluence with Multi-Spacecraft Observations

Published online by Cambridge University Press:  24 July 2018

T. Laitinen
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, United Kingdom email: tlmlaitinen@uclan.ac.uk
S. Dalla
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, United Kingdom email: tlmlaitinen@uclan.ac.uk
M. Battarbee
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, United Kingdom email: tlmlaitinen@uclan.ac.uk
M. S. Marsh
Affiliation:
Met Office, Exeter, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Forecasting Solar Energetic Particle (SEP) fluence, as integrated over an SEP event, is an important element when estimating the effect of solar eruptions on humans and technology in space. Current real-time estimates are based on SEP measurements at a single location in space. However, the interplanetary magnetic field corotates with the Sun approximately 13° each day with respect to Earth, thus in 4 days a near-Earth spacecraft will have changed their connection about 60° from the original SEP source. We estimate the effect of the corotation on particle fluence using a simple particle transport model, and show that ignoring corotation can cause up to an order of magnitude error in fluence estimations, depending on the interplanetary particle transport conditions. We compare the model predictions with STEREO observations of SEP events.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Burlaga, L. F. & Turner, J. M. 1976, JGR, 81, 73CrossRefGoogle Scholar
Cane, H. V., Reames, D. V. & von Rosenvinge, T. T. 1988, JGR, 93, 9555CrossRefGoogle Scholar
Dalla, S., Marsh, M. S., Kelly, J. & Laitinen, T. 2013, J. Geophys. Res. (Space Physics), 118, 5979CrossRefGoogle Scholar
Giacalone, J. & Jokipii, J. R. 2012, ApJL, 751, L33CrossRefGoogle Scholar
Jokipii, J. R. 1966, ApJ, 146, 480CrossRefGoogle Scholar
Laitinen, T., Kopp, A., Effenberger, F., Dalla, S. & Marsh, M. S. 2016, A&A, 591CrossRefGoogle Scholar
Marsh, M. S., Dalla, S., Dierckxsens, M., Laitinen, T. & Crosby, N. B. 2015, Space Weather, 13, 386CrossRefGoogle Scholar
Mewaldt, R. A., Cohen, C. M. S., Cook, W. R., et al. 2008, Space Sci. Rev., 136, 285CrossRefGoogle Scholar
Reames, D. V. 1999, Space Sci. Rev., 90, 413CrossRefGoogle Scholar
Richardson, I. G., von Rosenvinge, T. T., Cane, H. V., et al. 2014, Sol. Phys., 289, 3059CrossRefGoogle Scholar
Trichas, M., Gibbs, M., Harrison, R., et al. 2015, Hipparchos, vol. 2, Issue 12, pp. 25-31, 2, 25Google Scholar