Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T17:56:41.680Z Has data issue: false hasContentIssue false

Fueling-controlled growth of massive black holes

Published online by Cambridge University Press:  01 July 2007

Andrés Escala*
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University / SLAC, 2575 Sand Hill Rd. MS 29, Menlo Park, CA 94025, USA. email: andres@slac.stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported into the nuclear (central kpc) regions of galaxies. We study gas fueling onto the inner accretion disk (sub-pc scale) and star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulations of gas fueling, which is mainly depleted by star formation, naturally satisfy the ‘MBH - Mvirial’ relation, with a scatter considerably less than that observed. We find that a generalized version of the Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate (Ṁgas = ṀBH + ṀSF) scales as Mgas/torbital.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barnes, J. E. 2002, MNRAS, 333, 481CrossRefGoogle Scholar
Bryan, G. L. & Norman, M. L. 1997, astro-ph/9710187v1Google Scholar
Cen, R. & Ostriker, J. P. 1992, ApJ, 399L, 113CrossRefGoogle Scholar
Dotti, M., Colpi, M., & Haardt, F. 2006, MNRAS, 367, 103CrossRefGoogle Scholar
Escala, A., et al. 2004, ApJ, 607, 765CrossRefGoogle Scholar
Escala, A., et al. 2005, ApJ, 630, 152CrossRefGoogle Scholar
Escala, A. 2006, ApJ, 648, L13CrossRefGoogle Scholar
Escala, A. 2007, astroph/0705.4457CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, 9CrossRefGoogle Scholar
Gebhardt, K., et al. 2000, ApJ, 539, 13CrossRefGoogle Scholar
Haring, N. & Rix, H. W. 2004, ApJ, 604L, 89CrossRefGoogle Scholar
Kazantzidis, S., et al. 2005, ApJ, 623L, 67CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kormendy, J., & Richstone, D., ARA&A, 33, 581CrossRefGoogle Scholar
Mayer, L. et al. 2007, astroph/0706.1562CrossRefGoogle Scholar
Marconi, A. & Hunt, L. K. 2003, ApJ, 589L, 21CrossRefGoogle Scholar
Shlosman, I., Begelman, M., & Frank, J. 1990, Nature, 345, 679CrossRefGoogle Scholar