Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T03:46:52.671Z Has data issue: false hasContentIssue false

The Galactic interstellar medium: foregrounds and star formation

Published online by Cambridge University Press:  08 May 2018

Marc-Antoine Miville-Deschênes*
Affiliation:
Laboratoire AIM, CEA / CNRS / Université Paris-Saclay, 91191, Gif-sur-Yvette, France Institut d’Astrophysique Spatiale, CNRS / Université Paris-Sud, 91405, Orsay, France email: mamd@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Boissier, S., Boselli, A., Voyer, E., et al. 2015, A&A, 579, A29Google Scholar
Clark, S. E., Peek, J. E. G., & Putman, M. E., 2014, ApJ, 789, 82Google Scholar
Crovisier, J. & Dickey, J. M., 1983, A&A, 122, 282Google Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P., 2001, ApJ, 547, 792Google Scholar
Duc, P.-A., Cuillandre, J.-C., Karabal, E., et al. 2015, MNRAS, 446, 120CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J., 2004, ARA&A, 42, 211Google Scholar
Hennebelle, P. & Audit, E., 2007, A&A, 465, 431Google Scholar
Hennebelle, P. & Falgarone, E., 2012, A&ARv, 20, 55Google Scholar
Martin, P. G., Blagrave, K. P. M., Lockman, F. J., et al. 2015, ApJ, 809, 153CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Duc, P.-A., Marleau, F., et al. 2016, A&A, 593, A4Google Scholar
Miville-Deschênes, M.-A., Lagache, G., Boulanger, F., & Puget, J.-L., 2007, A&A, 469, 595Google Scholar
Miville-Deschênes, M.-A., Murray, N. & Lee, E. J. 2017a, ApJ, 834, 57CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Salomé, Q., Martin, P. G., et al. 2017b, A&A, 599, A109Google Scholar
Planck Collaboration, Abergel, A., Ade, P. A. R., et al. 2014, A&A, 571, A11Google Scholar
Saury, E., Miville-Deschênes, M.-A., Hennebelle, P., Audit, E., & Schmidt, W., 2014, A&A, 567, A16Google Scholar
Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O., 1995, ApJ, 443, 152CrossRefGoogle Scholar