Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T05:10:14.585Z Has data issue: false hasContentIssue false

Giant Elliptical Galaxies: Globular Clusters and UCDs

Published online by Cambridge University Press:  01 September 2007

William E. Harris*
Affiliation:
Physics & Astronomy, McMaster University, Hamilton, ON L8S 4M1Canada email: harris@physics.mcmaster.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Explorations of the globular cluster populations in many nearby galaxies are revealing increasing connections to other dense stellar systems such as UCDs, DGTOs, and nuclear star clusters in dwarf galaxies. The nearest giant elliptical, NGC 5128, is now giving us a much-improved delineation of the GC Fundamental Plane of structural parameters, and indicates as well that the known correlation between GC scale size and metallicity is likely to be at least partly a projection effect coupled with the different spatial distributions of the metal-poor and metal-rich clusters. New photometry of the huge cluster populations around the giant Brightest Cluster Ellipticals, which allows us to study samples of many thousands of GCs at once, are now beginning to turn up surprising examples of “sequences” of high-mass GCs leading up to the UCD regime. Lastly, new modelling of cluster formation through a specially tuned semi-analytic galaxy formation code strongly suggests that the mass-metallicity relation now known to affect the blue GC sequence can arise fairly naturally out of such models, if significant numbers of the massive GCs actually represent the remnant nuclei of stripped dwarf satellites.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barmby, P., McLaughlin, D. E., Harris, W. E., Harris, G. L. H., & Forbes, D. A. 2007, AJ, 133, 2764CrossRefGoogle Scholar
Evstigneeva, E. A., Gregg, M. D., Drinkwater, M. J., & Hilker, M. 2007, AJ, 133, 1722CrossRefGoogle Scholar
Gomez, M., & Woodley, K. A. 2007, ApJL, submittedGoogle Scholar
Harris, W. E., Harris, G. L. H., Barmby, P., McLaughlin, D. E., & Forbes, D. A. 2006, AJ, 132, 2187CrossRefGoogle Scholar
Harris, W. E., & Pudritz, R. E. 1994, ApJ, 429, 177CrossRefGoogle Scholar
Hasegan, M. et al. 2005, ApJ, 627, 203CrossRefGoogle Scholar
Jordan, A. 2004, ApJL, 613, 117CrossRefGoogle Scholar
Jordan, A. et al. 2005, ApJ, 634, 1002CrossRefGoogle Scholar
Jordan, A. et al. 2007, ApJL, submittedCrossRefGoogle Scholar
Kundu, A., & Whitmore, B. C. 1998, AJ, 116, 2841CrossRefGoogle Scholar
Kundu, A., Whitmore, B. C., Sparks, W. B., Macchetto, F. D., Zepf, S. E., & Ashman, K. M. 1999, ApJ, 513, 733CrossRefGoogle Scholar
Larsen, S. S., & Brodie, J. P. 2003, ApJ, 593, 618CrossRefGoogle Scholar
Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A., & Grillmair, C. J. 2001, AJ, 121, 2974CrossRefGoogle Scholar
McLaughlin, D. E. 2000, ApJ, 539, 618CrossRefGoogle Scholar
McLaughlin, D. E., Barmby, P., Harris, W. E., Harris, G. L. H., & Forbes, D. A. 2007, MNRAS, submittedGoogle Scholar
McLaughlin, D. E., & van der Marel, R. P. 2005, ApJS, 161, 304CrossRefGoogle Scholar
Mieske, S. et al. 2006, ApJ, 653, 193CrossRefGoogle Scholar
Phillipps, S., Drinkwater, M. J., Gregg, M. D., & Jones, J B. 2001, ApJ, 560, 201CrossRefGoogle Scholar
Rothberg, B., Harris, W. E., Somerville, R. S., Whitmore, B. C., & Woodley, K. A. 2007, ApJL, submittedGoogle Scholar
Spitler, L. R., Larsen, S. S., Strader, J., Brodie, J. P., Forbes, D. A., & Beasley, M. A. 2006, AJ, 132, 1593CrossRefGoogle Scholar
Strader, J., Brodie, J. P., Spitler, L., & Beasley, M. A. 2006, AJ, 132, 2333CrossRefGoogle Scholar
Wehner, E. M. H., & Harris, W. E. 2007, ApJL, in pressGoogle Scholar
Woodley, K. A., Harris, W. E., Beasley, M. A., Peng, E. W., Bridges, T. J., Forbes, D. A., & Harris, G. L. H. 2007, AJ, 134, 494CrossRefGoogle Scholar