Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:16:46.110Z Has data issue: false hasContentIssue false

GRS 1915+105 “celebrates its majority” (1992–2010)

Published online by Cambridge University Press:  24 February 2011

Alberto J. Castro-Tirado*
Affiliation:
Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de las Astronomía s/n, E-18080 Granada, Spain email: ajct@iaa.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the 18 years since its discovery, GRS 1915+105 has continuously brightened in the X/γ-ray sky. It is considered the prototypical microquasar. Most of these are LMXBs that show sporadic ejection of matter at apparently superluminal velocities. In these the three basic ingredients of quasars are found: a black hole, an accretion disc and collimated jets of high energy particles, but in microquasars the black hole is only a few M instead of several × 106 M; the accretion disc had mean thermal temperature of several × 106 K instead of several × 103 K, and the particles ejected at relativistic speeds travel distances of a few ly only, compared to few × 106 ly as in radio galaxies. However many open issues remain to be addressed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Acero, F. et al. 2009, A&A, 508, 1135Google Scholar
Belloni, T. et al. 2000, A&A, 355, 271Google Scholar
Castro-Tirado, A. J., Brandt, S., & Lund, N. 1992, IAU Circ., 5590Google Scholar
Castro-Tirado, A. J. et al. 1993, IAU Circ., 5830Google Scholar
Castro-Tirado, A. J. 1994, Ph.D. Thesis, Copenhagen Univ.Google Scholar
Castro-Tirado, A. J. et al. 1994, ApJ (Supplement Series), 92, 469Google Scholar
Castro-Tirado, A. J. et al. 1996, ApJ (Letters), 491, L99Google Scholar
Coriat, M. et al. 2010, These ProceedingsGoogle Scholar
Chaty, S. et al. 1996 A&A, 318, 825Google Scholar
Cui, W. et al. 1998 ApJ (Letters), 492, L53CrossRefGoogle Scholar
Deegan, P. et al. 2009 MNRAS, 400, 1337CrossRefGoogle Scholar
Dhawan, V. et al. 2000 ApJ, 543, 373CrossRefGoogle Scholar
Eikenberry, S. et al. 1998 ApJ (Letters), 494, L61CrossRefGoogle Scholar
Fender, R. et al. 1999 MNRAS, 304, 865CrossRefGoogle Scholar
Fender, R. & Belloni, T. 2004 ARA&A, 42, 317Google Scholar
Fender, R., Belloni, T., & Gallo, E. 2004 A&A, 355, 1105Google Scholar
Greiner, J., Cuby, & McCaughrean, 2001 Nature, 414, 522CrossRefGoogle Scholar
Harlaftis, E. & Greiner, J. 2004 A&A, 414, L13Google Scholar
Liang, E. P. & Li, H. 1995, A&A, 248, L45Google Scholar
McClintock, J. et al. 2006, ApJ, 652, 518CrossRefGoogle Scholar
Mirabel, I. F. et al. 1993a, IAU Circ., 5773Google Scholar
Mirabel, I. F. et al. 1993b, IAU Circ., 5830Google Scholar
Mirabel, I. F. & Rodríguez, L. F. 1994, Nature, 371, 46CrossRefGoogle Scholar
Mirabel, I. F. et al. 1998, A&A, 330, L9Google Scholar
Neil, E. T. et al. 2007, ApJ, 657, 409CrossRefGoogle Scholar
Neilsen, J. & Lee, J. C. 2009, Nature, 458, 481CrossRefGoogle Scholar
Neilsen, J. et al. 2010, These ProceedingsGoogle Scholar
Paciesas, W. et al. 1995, NYASA, 759, 308Google Scholar
Rodriguez, J. et al. 2008, ApJ, 675, 1449CrossRefGoogle Scholar
Sazonov, S. et al. 1994, PAZh, 20, 901Google Scholar
van Oers, P. et al. 2010, MNRAS, in pressGoogle Scholar
Ueda, Y. et al. 2010, ApJ, 713, 257CrossRefGoogle Scholar
Zdziarski, A. et al. 2005, MNRAS, 360, 825CrossRefGoogle Scholar