Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T15:16:38.704Z Has data issue: false hasContentIssue false

Hard Spectral Tails in Magnetars

Published online by Cambridge University Press:  04 June 2018

Zorawar Wadiasingh
Affiliation:
Centre For Space Research, North-West University, Potchefstroom, South Africa
Matthew G. Baring
Affiliation:
Rice University, Houston, Texas, USA
Peter L. Gonthier
Affiliation:
Hope College, Holland, Michigan, USA
Alice K. Harding
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsed non-thermal quiescent emission between 10 keV and around 150 keV has been observed in ~10 magnetars. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering of soft thermal photons from the neutron star surface is the most efficient radiative process. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 725, L73CrossRefGoogle Scholar
An, H., Archibald, R. F., Hascoët, R., et al. 2015, ApJ, 807, 93CrossRefGoogle Scholar
Baring, M. G., & Harding, A. K., 2007, Ap&SS, 308, 109Google Scholar
Baring, M. G., Gonthier, P. L., & Harding, A. K., 2005, ApJ, 630, 430CrossRefGoogle Scholar
Baring, M. G., Wadiasingh, Z., & Gonthier, P. L., 2011, ApJ, 733, 61CrossRefGoogle Scholar
Beloborodov, A. M., 2013, ApJ, 762, 13CrossRefGoogle Scholar
Beloborodov, A. M., & Thompson, C., 2007, ApJ, 657, 967CrossRefGoogle Scholar
Fernández, R., & Thompson, C., 2007, ApJ, 660, 615CrossRefGoogle Scholar
Gonthier, P. L., Baring, M. G., Eiles, M. T., et al. 2014, Phys. Rev. D, 90, 043014CrossRefGoogle Scholar
Harding, A. K., & Lai, D., 2006, Reports on Progress in Physics, 69, 2631CrossRefGoogle Scholar
den Hartog, P. R., Kuiper, L., Hermsen, W., et al. 2008a, A&A, 489, 245Google Scholar
Hascoët, R., Beloborodov, A. M., & den Hartog, P. R., 2014, ApJ, 786, L1CrossRefGoogle Scholar
Inan, U. S., Lehtinen, N. G., Moore, R. C., et al. 2007, Geophys. Res. Lett., 34, L08103Google Scholar
Kaspi, V. M., & Beloborodov, A. M., 2017, ARA&A, 55, 261Google Scholar
Li, J., Rea, N., Torres, D. F., & de Oña-Wilhelmi, E., 2017, ApJ, 835, 30CrossRefGoogle Scholar
Lyutikov, M., & Gavriil, F. P., 2006, MNRAS, 368, 690CrossRefGoogle Scholar
Mereghetti, S., 2008, A&A Rev., 15, 225Google Scholar
Thompson, C., & Beloborodov, A. M., 2005, ApJ, 634, 565CrossRefGoogle Scholar
Turolla, R., Zane, S., & Watts, A. L., 2015, Reports on Progress in Physics, 78, 116901CrossRefGoogle Scholar
Wadiasingh, Z., Baring, M. G., Gonthier, P. L., & Harding, A. K. 2017, submitted to ApJ, [WGBH17]Google Scholar