Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T19:37:24.223Z Has data issue: false hasContentIssue false

The High-energy emission of jetted AGN

Published online by Cambridge University Press:  03 March 2020

Daniel A. Schwartz*
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA02138, USA email: das@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quasars with flat radio spectra and one-sided, arc-second scale, ≈ 100 mJy GHz radio jets are found to have similar scale X-ray jets in about 60% of such objects, even in short 5 to 10 ks Chandra observations. Jets emit in the GHz band via synchrotron radiation, as known from polarization measurements. The X-ray emission is explained most simply, i.e. with the fewest additional parameters, as inverse Compton (iC) scattering of cosmic microwave background (cmb) photons by the relativistic electrons in the jet. With physics based assumptions, one can estimate enthalpy fluxes upwards of 1046 erg s−1, sufficient to reverse cooling flows in clusters of galaxies, and play a significant role in the feedback process which correlates the masses of black holes and their host galaxy bulges. On a quasar-by-quasar basis, we can show that the total energy to power these jets can be supplied by the rotational energy of black holes with spin parameters as low as a = 0.3. For a few bright jets at redshifts less than 1, the Fermi gamma ray observatory shows upper limits at 10 Gev which fall below the fluxes predicted by the iC/cmb mechanism, proving the existence of multiple relativistic particle populations. At large redshifts, the cmb energy density is enhanced by a factor (1+z)4, so that iC/cmb must be the dominant mechanism for relativistic jets unless their rest frame magnetic field strength is hundreds of micro-Gauss.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barnacka, A., Geller, M. J., Dell’Antonio, I. P., & Benbow, W. 2015, ApJ, 809, 100 CrossRefGoogle Scholar
Barnacka, A., Geller, M. J., Dell’Antonio, I. P., & Zitrin, A. 2016, ApJ, 821, 58 CrossRefGoogle Scholar
Barnacka, A. 2018, Physics Reports, 778, 1 CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, Reviews of Modern Physics, 56, 255 CrossRefGoogle Scholar
Bicknell, G. V. 1994, ApJ, 422, 542 CrossRefGoogle Scholar
Blandford, R. D., & Rees, M. J. 1974, MNRAS, 169, 395 CrossRefGoogle Scholar
Breiding, P., Meyer, E. T., Georganopoulos, M., et al. 2017, ApJ, 849, 95 CrossRefGoogle Scholar
Bridle, A. H., & Perley, R. A. 1984, AAR&A, 22, 319 CrossRefGoogle Scholar
Burbidge, G. R. 1956, ApJ, 124, 416 CrossRefGoogle Scholar
Celotti, A., Ghisellini, G., & Chiaberge, M. 2001, MNRAS, 321, L1 CrossRefGoogle Scholar
Chartas, G., et al. 2000, ApJ, 542, 655 CrossRefGoogle Scholar
Dermer, C. D. 1995, ApJL, 446, L63 CrossRefGoogle Scholar
Dermer, C. D. & Schlickeiser, R. 1994, ApJS, 90, 945 Google Scholar
Fabian, A. C., Sanders, J. S., Ettori, S., et al. 2000, MNRAS, 318, L65 CrossRefGoogle Scholar
Feigelson, E. D., Schreier, E. J., Delvaille, et al. 1981, ApJ., 251, 31 CrossRefGoogle Scholar
Gaskin, J. A., Allured, R., Bandler, S. R., et al. 2017, SPIE Conference Series, 10397, 103970S Google Scholar
Gaskin, J. A., Dominguez, A., Gelmis, K., et al. 2018, SPIE Conference Series, 10699, 106990N Google Scholar
Gabuzda, D. 2014, Nature, 510, 42 CrossRefGoogle Scholar
Gabuzda, D. C., Knuettel, S., & Reardon, B. 2015, MNRAS, 450, 2441 CrossRefGoogle Scholar
Gabuzda, D. C., Roche, N., Kirwan, A., et al. 2017, MNRAS, 472, 1792 CrossRefGoogle Scholar
Gültekin, K., Cackett, E. M., Miller, J. M., et al. 2009, ApJ, 706, 404 CrossRefGoogle Scholar
Hardcastle, M. J., Lenc, E., Birkinshaw, M., et al. 2016, MNRAS, 455, 3526 CrossRefGoogle Scholar
Harris, D. E., & Krawczynski, H. 2006, ARAA, 44, 463 CrossRefGoogle Scholar
Harris, D. E., & Krawczynski, H. 2007, Revista Mexicana de Astronomia y Astrofisica, vol. 27, 27, 188 Google Scholar
Harris, D. E., Lee, N. P., Schwartz, D. A., et al. 2017, ApJ, 846, 119 CrossRefGoogle Scholar
Igumenshchev, I. V. 2008, ApJ, 677, 317 Google Scholar
Longair, M. S., Ryle, M., & Scheuer, P. A. G. 1973, MNRAS, 164, 243 CrossRefGoogle Scholar
Marshall, H. L., Schwartz, D. A., Lovell, J. E. J., et al. 2005, ApJS, 156, 13 CrossRefGoogle Scholar
Marshall, H. L., Hardcastle, M. J., Birkinshaw, M., et al. 2010, ApJL, 714, L213 CrossRefGoogle Scholar
Marshall, H. L., Gelbord, J. M., Schwartz, D. A., et al. 2011, ApJS, 193, 15 CrossRefGoogle Scholar
Marshall, H. L., Gelbord, J. M., Worrall, D. M., et al. 2018, ApJ, 856, 66 Google Scholar
Massaro, F., Harris, D. E., & Cheung, C. C. 2011, ApJS, 197, 24 CrossRefGoogle Scholar
Meyer, E. T., Georganopoulos, M., Sparks, W. B., et al. 2015, ApJ, 805, 154 CrossRefGoogle Scholar
Meyer, E. T., Breiding, P., Georganopoulos, M., et al. 2017, ApJL, 835, L35 CrossRefGoogle Scholar
Miley, G. 1980, ARAA, 18, 165 CrossRefGoogle Scholar
Morrison, P. 1958, Nuovo Cimento, 7, 858 CrossRefGoogle Scholar
Mueller, M., & Schwartz, D. A. 2009, ApJ, 693, 648 CrossRefGoogle Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, PASJ, 55, L69 Google Scholar
Narayan, R., McClintock, J. E., & Tchekhovskoy, A. 2014, in: Biák, J. & Ledvinka, T. (eds.), General Relativity, Cosmology and Astrophysics (Springer) p. 523 Google Scholar
Özel, F. 2018, Nature Astronomy, 2, 608 CrossRefGoogle Scholar
Perley, R. A., Willis, A. G., & Scott, J. S. 1979, Nature, 281, 437 CrossRefGoogle Scholar
Perlman, E. S., Georganopoulos, M., Marshall, H. L., et al. 2011, ApJ, 739, 65 CrossRefGoogle Scholar
Collaboration, Planck, Aghanim, N., Akrami, Y., et al. 2017, A&Ap, 607, A95 Google Scholar
Readhead, A. C. S., Cohen, M. H., & Blandford, R. D. 1978, Nature, 272, 131 CrossRefGoogle Scholar
Rees, M. J. 1971, Nature, 229, 312 Google Scholar
Sądowski, A., Narayan, R., McKinney, J. C., & Tchekhovskoy, A. 2014, MNRAS, 439, 503 CrossRefGoogle Scholar
Sambruna, R. M., Maraschi, L., Tavecchio, F., Urry, C. M., Cheung, C. C., Chartas, G., Scarpa, R., & Gambill, J. K. 2002, ApJ, 571, 20 CrossRefGoogle Scholar
Sambruna, R. M., Gambill, J.K., Maraschi, L., Tavecchio, F., Cerutti, R., Cheung, C. C., Urry, C. M., & Chartas, G., 2004, ApJ, 608, 698 CrossRefGoogle Scholar
Sambruna, R. M., Gliozzi, M., Donato, D., et al. 2006, ApJ, 641, 717 CrossRefGoogle Scholar
Savedoff, M. P. 1959, Nuovo Cimento, 13, 12 CrossRefGoogle Scholar
Scheuer, P. A. G. 1974, MNRAS, 166, 513 CrossRefGoogle Scholar
Schreier, E. J., Gorenstein, P., & Feigelson, E. D., 1982, ApJ, 261, 42 CrossRefGoogle Scholar
Schwartz, D. A., et al. 2000, ApJL, 540, L69 CrossRefGoogle Scholar
Schwartz, D. A., Marshall, H. L., Miller, B. P., et al. 2003, in: Collin, S., Combes, F. and Shlosman, I. (eds.) ASP Conference Series, 290, 359 Google Scholar
Schwartz, D. A. 2005, EAS Publications Series, 15, 353 Google Scholar
Schwartz, D. A. 2005, in: Chen, Pisin, Bloom, Elliott, Madejski, Greg, and Patrosian, Vahe (eds.), 22nd Texas Symposium on Relativistic Astrophysics, p.38 Google Scholar
Schwartz, D. A., Marshall, H. L., Lovell, J. E. J., et al. 2006, ApJ, 640, 592 CrossRefGoogle Scholar
Schwartz, D. A., Marshall, H. L., Lovell, J. E. J., et al. 2006b, ApJL, 647, L107 CrossRefGoogle Scholar
Schwartz, D. 2010, PNAS, 107, 7190 CrossRefGoogle Scholar
Schwartz, D. A. 2014, Rev. Sci. Inst., 85, 061101 CrossRefGoogle Scholar
Schwartz, D. A., Marshall, H. L., Worrall, D. M., et al. 2015, IAU Symposium Extragalactic Jets from Every Angle, 313, 219 Google Scholar
Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJS, 194, 45 CrossRefGoogle Scholar
Siemiginowska, A, Bechtold, J., Aldcroft, T. L., Elvis, M., Harris, D. E., & Dobrzycki, A. 2002, ApJ, 570, 543 Google Scholar
Tavecchio, F., Maraschi, L., Sambruna, R. M., & Urry, C. M. 2000, ApJL, 544, L23 CrossRefGoogle Scholar
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, MNRAS, 418, L79 CrossRefGoogle Scholar
Turland, B. D. 1975, MNRAS, 172, 181 Google Scholar
Vikhlinin, A. 2018, AAS Meeting #231, 231, 103.04Google Scholar
Waggett, P. C., Warner, P. J., & Baldwin, J. E. 1977, MNRAS, 181, 465 CrossRefGoogle Scholar
Weisskopf, M. C., Brinkman, C., Canizares, C., et al. 2002, PASP, 114, 1 CrossRefGoogle Scholar
Weisskopf, M. C., Aldcroft, T. L., Bautz, M., et al. 2003, Exp. Astron., 16, 1 CrossRefGoogle Scholar
Willingale, R. 1981 MNRAS, 194, 359 Google Scholar
Worrall, D. M. 2005, Highlights of Astronomy, 13, 685 CrossRefGoogle Scholar
Worrall, D. M. 2009, A&ARv, 17, 1 Google Scholar
Xiong, D. R., & Zhang, X. 2014, MNRAS, 441, 3375 CrossRefGoogle Scholar
Zamaninasab, M., Clausen-Brown, E., Savolainen, T., & Tchekhovskoy, A. 2014, Nature, 510, 126 CrossRefGoogle Scholar