Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T19:41:03.033Z Has data issue: false hasContentIssue false

Hydrodynamics of Young Binaries with Low-Mass Secondaries

Published online by Cambridge University Press:  23 April 2012

Tatiana Demidova
Affiliation:
Pulkovo Astronomical Observatory of the Russian Academy of Sciences, 196140, Pulkovskoye chaussee 65/1, Saint-Petersburg, Russia email: proxima1@list.ru
Vladimir Grinin
Affiliation:
Pulkovo Astronomical Observatory of the Russian Academy of Sciences, 196140, Pulkovskoye chaussee 65/1, Saint-Petersburg, Russia email: proxima1@list.ru Saint-Petersburg State University, V.V. Sobolev Astronomical Institute, 198504, Universitetskij pr. 28, Petrodvorets, Saint-Petersburg, Russia
Nataliya Sotnikova
Affiliation:
Saint-Petersburg State University, V.V. Sobolev Astronomical Institute, 198504, Universitetskij pr. 28, Petrodvorets, Saint-Petersburg, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The model of a young star with a low-mass secondary component (q = M2/M1 ≤ 0.1) accreting matter from a circumbinary (CB) disc is considered. It is assumed that the orbit and the CB disc can be coplanar and non-coplanar. The model parameters were varied within the following ranges: the component mass ratio q ranged from 0.1 to 0.003, the eccentricity e varied from 0 to 0.7, the inclination of the orbit plane to the CB disc ranged from 0 to 10 degrees, and the parameter that defines the viscosity of the system was also varied. A number of hydrodynamics models of such a system have been calculated by the SPH method and then the variations of the circumstellar extinction and phase brightness curves were determined. The calculated brightness curves differ in shape and amplitude and it depends on the model parameters and the orientation of the system relative to the observer. The results were used to analyze the cyclic activity of UX Ori type stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Artymowicz, P. & Lubow, S. H. 1996, ApJ, 467, L77CrossRefGoogle Scholar
Bertout, C. 2000, A&A, 363, 984Google Scholar
Burrows, C. J., Krist, J. E., Stapelfeldt, K. R. & WFPC2 Investigation Definition Team 1995, BAAS, 27, 1329Google Scholar
Chapillon, E., Guilloteau, S., Dutrey, A., & Pie'tu, V. 2008, A&A, 488, 565Google Scholar
Demidova, T. V., Grinin, V. P., & Sotnikova, N. Ya. 2010, Pisma Astron. Zh., 36, 526 [Astron. Lett., 36, 498 (2010)]Google Scholar
Eisner, J. A., Lane, B. F., Hillenbrand, L. A., Akeson, R. L., & Sargent, A. I. 2004, ApJ, 613, 1049CrossRefGoogle Scholar
Grinin, V. P., Kiselev, N. N., Minikulov, N. Kh. et al. , 1991, Ap&SS, 186, 283Google Scholar
Grinin, V. P., Rostopchina, A. N., & Shakhovskoi, D. N. 1998, Pisma Astron. Zh., 24, 925 [Astron. Lett., 24, 802 (1998)]Google Scholar
Grinin, V. P., Stempels, E., Gahm, G. et al. , 2008, A&A, 489, 1233Google Scholar
Grinin, V. P., Demidova, T. V., & Sotnikova, N. Ya., 2010a, Pisma Astron. Zh., 36, 584 [Astron. Lett., 36, 808 (2010)]Google Scholar
Grinin, V. P., Rostopchina, A. N., Barsunova, O. U., & Demidova, T. V. 2010b, Astrophysics 53, 367Google Scholar
Larwood, J. D. & Papaloizou, J. C. P. 1997, MNRAS, 285, 288Google Scholar
Mouillet, D., Larwood, J. D., Papaloizou, J. C. B., & Larange, A. M. 1997, MNRAS, 292, 896Google Scholar
Rostopchina, A. N. 1999, Astron. Zh., 76, 136 [Astron. Rep., 43, 113 (1999)]Google Scholar
Rostopchina, A. N., Shakhovskoi, D. N, Grinin, V. P., & Lomach, A. A. 2007, Astron. Zh., 84, 60 [Astron. Rep., 51, 55 (2007)]Google Scholar
Sotnikova, N. Ya. & Grinin, V. P. 2007, Pis'ma Astron. Zh., 33, 667 [Astron. Lett., 33, 594 (2007)]Google Scholar
Schevchenko, V. S., Grankin, K. N, Ibragimov, M. A. et al. , 1993, Ap&SS, 202, 137Google Scholar