Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T08:30:09.322Z Has data issue: false hasContentIssue false

The Impact of UV Radiation on Circumstellar Chemistry

Published online by Cambridge University Press:  30 December 2019

Maryam Saberi
Affiliation:
Dep. of Space, Earth and Environment, Chalmers University of Technology & Onsala Space Observatory, 43992 Onsala, Sweden email: maryam.saberi@chalmers.se
Wouter Vlemmings
Affiliation:
Dep. of Space, Earth and Environment, Chalmers University of Technology & Onsala Space Observatory, 43992 Onsala, Sweden email: maryam.saberi@chalmers.se
Tom Millar
Affiliation:
School of Maths and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland
Elvire De Beck
Affiliation:
Dep. of Space, Earth and Environment, Chalmers University of Technology & Onsala Space Observatory, 43992 Onsala, Sweden email: maryam.saberi@chalmers.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

UV radiation plays a critical role in the chemistry of circumstellar envelopes (CSEs) around evolved stars on the asymptotic giant branch (AGB). However, the effects of all potential sources of UV radiation have not been included in models. We present preliminary results of adding an internal source of UV to the CSE chemistry and predict large enhancements of atomic and ionic species arising from photo-destruction of parent species. Observations of atomic carbon towards the UV-bright AGB star o Cet are consistent with the modelling. In addition, we calculate the precise depth dependence of the CO photodissociation rate in an expanding CSE. We incorporate this within a chemical network active in the outflows of AGB stars, which includes 933 species and 15182 reactions. Our results show that the CO envelope size is about 30% smaller at half abundance than the most commonly used radius reported by Mamon et al. (1988).

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Groenewegen, M. A. T. 2017, A & A, 606, 67 CrossRefGoogle Scholar
Keene, J., Young, K., Phillips, T. G., et al. 1993, ApJ, 415, 131 CrossRefGoogle Scholar
Knapp, G. R., Crosas, M., Young, K., Ivezić, Ž 2000, ApJ, 534, 324 CrossRefGoogle Scholar
Lambert, D. L., Gustafsson, B., Eriksson, K., Hinkle, K. H. 1986, ApJ, 62, 373 Google Scholar
Letzelter, C., Eidelsberg, M., Rostas, F., et al. 1987, Chem. Phys., 114, 273 CrossRefGoogle Scholar
Li, X, Millar, T. J., Walsh, C., et al. 2014, A & A, 568, 111 CrossRefGoogle ScholarPubMed
McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A & A, 550A, 36 CrossRefGoogle Scholar
Montez, R. Jr., Ramstedt, S., Kastner, J. H., et al. 2017, ApJ, 841, 33 CrossRefGoogle Scholar
Morris, M., & Jura, M. 1983, ApJ, 267, 179 CrossRefGoogle Scholar
Olofsson, H., Bergman, P., Lindqvist, M 2015, A & A, 582, 102 CrossRefGoogle Scholar
Röllig, M., Ossenkopf, V. 2013, A & A, 550A, 56 CrossRefGoogle Scholar
Saberi, M., Maercker, M., De Beck, E., et al. 2017, A & A, 599A, 63 CrossRefGoogle Scholar
Saberi, M., Vlemmings, W. H. T., De Beck, E., et al. 2018, A & A, 612, L11 CrossRefGoogle Scholar
van der Veen, W. E. C. J.; Huggins, P. J.; Matthews, H. E. 1998, ApJ, 505, 749 CrossRefGoogle Scholar
Visser, R., van Dishoeck, E. F., Black, J. H. 2009, A & A, 503, 323 CrossRefGoogle Scholar
Vlemmings, W. H. T., Maercker, M., Lindqvist, M., et al. 2018, A & A, 556, 1 CrossRefGoogle Scholar