Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:16:04.009Z Has data issue: false hasContentIssue false

Investigating ultraluminous X-ray sources through their multiwavelength variability and broadband spectra

Published online by Cambridge University Press:  23 June 2017

Luca Zampieri
Affiliation:
INAF-Astronomical Observatory of Padova Vicolo dell’Osservatorio 5, 35122 Padova, Italy email: luca.zampieri@oapd.inaf.it
Elena Ambrosi
Affiliation:
Department of Physics and Astronomy, University of Padova, Vicolo Osservatorio 3, 35122 Padova, Italy
Amid Nayerhoda
Affiliation:
Department of Physics and Astronomy, University of Padova, Vicolo Osservatorio 3, 35122 Padova, Italy Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The population of ultraluminous X-ray sources encompasses accreting compact objects with significantly different masses, from black holes of intermediate mass, to black holes of stellar origin, to neutron stars. Investigating these sources will help us answering crucial questions on the distribution of black hole masses and on mass accretion above the Eddington limit in the local Universe, that have potential implications in other astrophysical areas. In order to perform a detailed investigation of ultraluminous X-ray sources, an accurate modeling of their evolution and multiwavelength emission properties is needed. We report some preliminary results of the activities that we are carrying out at present in this area.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2014, PhRvL, 116, article id. 061102Google Scholar
Bachetti, M., Harrison, F. A., Walton, D. J., et al. 2014, Nature, 514, 202 Google Scholar
Belczynski, K., Bulik, T., Fryer, et al. 2010, ApJ, 714, 1217 CrossRefGoogle Scholar
Farrell, S. A., Webb, N. A., Barret, D., et al. 2009, Nature, 460, 73 Google Scholar
Feng, H. & Soria, R. 2011, New Astronomy Reviews, 55, 166 CrossRefGoogle Scholar
Fragos, T., Linden, T., Kalogera, V., & Sklias, P. 2015, ApJ, 802, L5 Google Scholar
Fuerst, F., Walton, D. J., Stern, D., et al. 2016, ApJL, in press (arXiv:1610.00258)Google Scholar
Israel, G. L., Papitto, A., Esposito, P., et al. 2016, MNRAS Letters, in press (arXiv:1609.06538)Google Scholar
Israel, G. L., Belfiore, A., Stella, L., et al. 2016, ArXiv e-prints, (arXiv:1609.07375)Google Scholar
Liu, J.-F., Bregman, J. N., Bai, Y., et al., 2013, Nature, 503, 500 Google Scholar
Mapelli, M., Colpi, M., & Zampieri, L. 2009, MNRAS, 395, L71 CrossRefGoogle Scholar
Mapelli, M., Ripamonti, E., Zampieri, L., Colpi, M., & Bressan, A. 2010, MNRAS, 408, 234 Google Scholar
Mapelli, M. & Zampieri, L. 2014, ApJ, 794, article id. 7Google Scholar
Middleton, M. J., Heil, L., Pintore, F., et al. 2015, MNRAS, 447, 3243 Google Scholar
Motch, C., Pakull, M. W., Soria, R., et al. 2014, Nature, 514, 198 Google Scholar
Patruno, A. & Zampieri, L. 2008, MNRAS, 386, 543 Google Scholar
Pinto, C., Middleton, M. J., & Fabian, A. C. 2016, Nature, 533, 64 Google Scholar
Poutanen, J., Lipunova, G., Fabrika, S., et al. 2007, MNRAS, 377, 1187 CrossRefGoogle Scholar
Servillat, M., Farrell, S. A., Lin, D., et al. 1995, ApJ, 743, article id. 6Google Scholar
Takeuchi, S., Ohsuga, K., & Mineshige, S. 1995, PASJ, 65, article id. 88Google Scholar
Webb, N., Cseh, D., Lenc, E., et al. 2012, Science, 337, 554 CrossRefGoogle Scholar
Zampieri, L. & Roberts, T. P. 2009, MNRAS, 400, 677 Google Scholar