Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T05:24:11.125Z Has data issue: false hasContentIssue false

Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer

Published online by Cambridge University Press:  17 August 2012

George J. Bendo
Affiliation:
UK ALMA Regional Centre Node, Jodrell Bank Centre for AstrophysicsSchool of Physics and Astronomy, University of ManchesterOxford Road, Manchester M13 9PL, United Kingdom email: george.bendo@manchester.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use Herschel Space Observatory and Spitzer Space Telescope 70-500 μm data along with ground-based optical and near-infrared data to understand how dust heating in the nearby face-on spiral galaxies M81, M83, and NGC 2403 is affected by the starlight from all stars and by the radiation from star-forming regions. We find that 70/160 μm flux density ratios tend to be more strongly influenced by star-forming regions. However, the 250/350 and 350/500 μm micron flux density ratios are more strongly affected by the light from the total stellar populations, suggesting that the dust emission at > 250 μm originates predominantly from a component that is colder than the dust seen at <160 μm and that is relatively unaffected by star formation activity. We conclude by discussing the implications of this for modelling the spectral energy distributions of both nearby and more distant galaxies and for using far-infrared dust emission to trace star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bendo, G. J. et al. 2010, A&A (Letters), 518, L65Google Scholar
Bendo, G. J. et al. 2011, in press (arXiv:1109.0237V1 [astro-ph])Google Scholar
Boquien, M. et al. 2010, A&A (Letters), 518, L70Google Scholar
Boquien, M. et al. 2011, AJ, 142, 111CrossRefGoogle Scholar
Boselli, A. & Gavazzi, G. 2002, A&A, 386, 124Google Scholar
Buat, V. & Xu, C. 1996, A&A, 306, 61Google Scholar
Calzetti, D. et al. 2010, ApJ, 714, 1256CrossRefGoogle Scholar
Devereux, N. A. & Young, J. S. 1990, ApJ (Letters), 350, L25CrossRefGoogle Scholar
Draine, B. T. et al. 2007, ApJ, 663, 866CrossRefGoogle Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525CrossRefGoogle Scholar
Meurer, G. R. et al. 2006, ApJS, 165, 307CrossRefGoogle Scholar
Pilbratt, G. et al. 2010, A&A (Letters), 518, L1Google Scholar
Popescu, C. C., Tuffs, R. J., Dopita, M. A., Fischera, J., Kylafis, N. D., & Madore, B. F. 2011, A&A, 527, A109.Google Scholar
Rowan-Robinson, M. et al. 2010, MNRAS, 409, 2CrossRefGoogle Scholar
Sauvage, M. & Thuan, T. X. 1992, ApJ (Letters), 396, L69CrossRefGoogle Scholar
Verley, S. et al. 2010, A&A (Letters), 518, L68Google Scholar
Walterbos, R. A. M. & Greenawalt, B. 1996, ApJ, 460, 696CrossRefGoogle Scholar