Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T02:42:51.675Z Has data issue: false hasContentIssue false

ISM Diagnostics: Dust

Published online by Cambridge University Press:  21 March 2013

Takashi Onaka*
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan email: onaka@astron.s.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Infrared (IR) observations provide significant information on the lifecycle of dust grains in the interstellar medium (ISM), which is crucial for the understanding of the evolution of matter in the universe. The IR spectral energy distribution (SED) of the dust emission tells us the relative abundance of sub-micron grains, very small grains, and carriers of the unidentified infrared (UIR) emission bands, since they emit the far-IR, the mid-IR, and the UIR bands from the near- to mid-IR, respectively. On the other hand, the UIR emission bands themselves offer a useful means to probe the physical conditions from which the band emission arises because each band is assigned to a specific C-H or C-C vibration mode and because its relative intensity should reflect the properties of the band carriers and the physical conditions of the environment. Here the two diagnostic methods using IR observations are briefly described together with examples of the observational results. Implications for the dust lifecycle are also discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bauschlicher, C. W. Jr., Peeters, E., & Allamandola, L. J. 2008, ApJ, 678, 316CrossRefGoogle Scholar
Bauschlicher, C. W. Jr., Peeters, E., & Allamandola, L. J. 2009, ApJ, 697, 311CrossRefGoogle Scholar
Boulanger, F., Baud, B., & van Albada, G. D. 1985, A&A, 144, L9Google Scholar
Chan, K.-W., Roellig, T. L., Onaka, T., et al. 2001, ApJ, 546, 273Google Scholar
Compiègne, M., Verstraete, L., Jones, A., et al. 2011, A&A, 525, 103Google Scholar
Dale, D. A., Helou, G., Contursi, A., Silbermann, N. A., & Kolhatkar, S. 2001, ApJ, 549, 1886CrossRefGoogle Scholar
Draine, B. T., & Li, A. 2001 ApJ, 551, 807CrossRefGoogle Scholar
Draine, B. T., Dale, D. A., Bendo, G., et al. 2007, ApJ, 663, 866CrossRefGoogle Scholar
Engelbracht, C. W., Rieke, G. H., Gordon, K. D., et al. 2008, ApJ, 678, 804CrossRefGoogle Scholar
Hauser, M. G., Arendt, R. G., Kelsall, T., et al. 1998, ApJ, 508, 25Google Scholar
Hunt, L., Thuan, T. X., Izotov, Y. I., & Sauvage, M. 2010, AJ, 712, 164Google Scholar
Ita, Y., Onaka, T., Kato, D., et al. 2008, PASJ, 60, S435Google Scholar
Jones, A. P. 2004, ASP conf. ser., 309, 347Google Scholar
Kaneda, H., Onaka, T., & Sakon, I. 2005, ApJ, 632, L83CrossRefGoogle Scholar
Kaneda, H., Onaka, T., & Sakon, I. 2007, ApJ, 666, L21CrossRefGoogle Scholar
Kaneda, H., Onaka, T., Sakon, I., Kitayama, T., Okada, T., & Suzuki, T. 2008, ApJ, 684, 270CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Armus, L., Bendo, G., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Kwok, S. & Zhang, Y. 2011, Nature, 479, 80CrossRefGoogle Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., et al. 2006, AJ, 132, 2288CrossRefGoogle Scholar
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010, A&A, 510, 37Google Scholar
Mori, T. I., Sakon, I., Onaka, T., Kaneda, H., Umehata, H., & Ohsawa, R. 2012, ApJ, 744, 68Google Scholar
Ohyama, Y., Onaka, T., Matsuhara, H., et al. 2007, PASJ, 59, S411CrossRefGoogle Scholar
Onaka, T., Yamamura, I., Tanabeé, , Roellig, T. L., & Yuen, L. 1996, PASJ, 48, L59Google Scholar
Onaka, T. 2000, Adv. Sp. Res., 25, 2167Google Scholar
Onaka, T. 2004, ASP conf. ser., 309, 163Google Scholar
Onaka, T., Matsuhara, H., Wada, T., et al. 2007a, PASJ, 59, S401Google Scholar
Onaka, T., Tokura, D., Sakon, I., Tajiri, Y. Y., Takagi, T., & Shibai, H. 2007b, ApJ, 654, 844CrossRefGoogle Scholar
Onaka, T., Matsumoto, H., Sakon, I., & Kaneda, H. 2008, IAU Symp., 251, 229Google Scholar
Onaka, T., Matsumoto, H., Sakon, I., & Kaneda, H. 2010, A&A, 514, A15Google Scholar
Paradis, D., Reach, W., Berdard, J.-P., et al. 2009, ApJ, 138, 196CrossRefGoogle Scholar
Povich, M., Stone, J. M., Churchwell, E., et al. 2007, ApJ, 660, 346CrossRefGoogle Scholar
Sakon, I., Onaka, T., Ishihara, D., et al. 2004, ApJ 609 203 (Erratum: ApJ, 625, 1062)CrossRefGoogle Scholar
Sandstrom, K. M., Bolatto, A., Draine, B. T., Bot, C., & Stanimirović, S. 2010, ApJ, 715, 701CrossRefGoogle Scholar
Sandstrom, K. M., Bolatto, A., Bot, C., et al. 2012, ApJ, 744, 20CrossRefGoogle Scholar
Smith, J. D. T., Draine, B. T., Dale, D. A., et al. 2007, ApJ, 656, 770CrossRefGoogle Scholar
Tanaka, M., Matsumoto, T., Murakami, H., et al. 1996, PASJ, 48, L53CrossRefGoogle Scholar
Tielens, A. G. G. M., 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge, UK: Cambridge University Press)Google Scholar
Tielens, A. G. G. M., 2008, ARAA, 46, 289CrossRefGoogle Scholar
Wu, R., Hogg, D. W., & Moustakas, J. 2011, ApJ, 730, 111Google Scholar