Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T13:59:38.492Z Has data issue: false hasContentIssue false

The James Webb Space Telescope and its capabilities for exoplanet science

Published online by Cambridge University Press:  10 November 2011

Mark Clampin*
Affiliation:
NASA goddard Space Flight Center, Greenbelt, MD 20771 email: mark.clampin@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The James Webb Space Telescope is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 ?m to 28 ?m. JWSTs primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWSTs instrument complement offers numerous capabilities to study the formation and evolution of exoplanets via direct imaging, high contrast coronagraphic imaging and photometric and spectroscopic observations of transiting exoplanets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Beichman, C., et al. 2010, PASP, 122, 162CrossRefGoogle Scholar
Cavarroc, C., et al. 2008, Proc. SPIE, 7010, 29Google Scholar
Charbonneau, D., et al. 2009, Nature, 462, 891CrossRefGoogle Scholar
Charbonneau, D. & Deming, L. 2007, arXiv0706.1047CGoogle Scholar
Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. 2002, ApJ, 568, 377CrossRefGoogle Scholar
Deming, L., et al. 2009, PASP, 121, 952CrossRefGoogle Scholar
Gardner, J. P., et al. 2006, SSRv, 123, 485Google Scholar
Green, J. J., et al. 2005, Proc. SPIE, 5905, 185Google Scholar
Greene, T., et al. 2007, Proc. SPIE, 6693, 15Google Scholar
Wright, G. S., et al. 2008, Proc. SPIE, 7010, 28Google Scholar
Jakobsen, P., et al. 2010, BAAS, 215, 396Google Scholar
Krist, J., et al. 2009, Proc. SPIE, 7440, 31Google Scholar
Krist, J., et al. 2007, Proc. SPIE, 6693, 12Google Scholar
Leger, A., et al. 2009, A&A, 506, 287Google Scholar
Makidon, R. B., et al. 2008, Proc. SPIE, 7010, 22Google Scholar
Marois, C., Doyon, R., Racine, R., & Nadeau, D. 2000, PASP, 112, 767CrossRefGoogle Scholar
Rieke, M. J., et al. 2003, Proc. SPIE, 4850, 478CrossRefGoogle Scholar
Sivaramakrishnan, A., et al. 2009, Proc. SPIE 7440, 33Google Scholar
Swain, M. R., et al. 2009, ApJ 704, 1616CrossRefGoogle Scholar
Swain, M. R., et al. 2008, Nature, 452, 329CrossRefGoogle Scholar
Traub, W. A. & Kaltenegger, L. 2009, ApJ 98, 519Google Scholar