Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T07:34:45.875Z Has data issue: false hasContentIssue false

KETJU: Post-Newtonian-Accurate Supermassive Black Hole Dynamics in GADGET-3

Published online by Cambridge University Press:  23 June 2017

Antti Rantala
Affiliation:
Department of Physics, University of HelsinkiGustaf Hällstrmin katu 2A, 00560, Helsinki, Finland email: antti.rantala@helsinki.fi
Pauli Pihajoki
Affiliation:
Department of Physics, University of HelsinkiGustaf Hällstrmin katu 2A, 00560, Helsinki, Finland email: antti.rantala@helsinki.fi
Peter H. Johansson
Affiliation:
Department of Physics, University of HelsinkiGustaf Hällstrmin katu 2A, 00560, Helsinki, Finland email: antti.rantala@helsinki.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present KETJU, a new regularized tree code based on algorithmic chain regularization and implemented into Gadget-3. This new code is able to follow simultaneously galactic-scale dynamical and astrophysical processes and the small-scale supermassive black hole binary dynamics. We present here the general idea of this new code and show a test simulation of black hole binary dynamics in a galaxy merger of two massive elliptical galaxies. The separation of the black holes at the time of the merger is several orders of magnitude smaller in KETJU than when compared to ordinary Gadget-3 simulations. The merger timescale is also longer by 100 − 200 Myr.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Aarseth, S. J. 1999, PASP, 111, 1333 CrossRefGoogle Scholar
Amaro-Seoane, P., Aoudia, S., Babak, S., et al. 2012, Classical and Quantum Gravity, 29, 124016 CrossRefGoogle Scholar
Johansson, P. H., Naab, T., & Burkert, A. 2009, APJ, 690, 802 CrossRefGoogle Scholar
Karl, S. J., Aarseth, S. J., Naab, T., Haehnelt, M. G., & Spurzem, R. 2015, MNRAS, 452, 2337 CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581 CrossRefGoogle Scholar
Kustaanheimo, P. & Stiefel, E. 1965, J. Reine Angew. Math, 218, 204 CrossRefGoogle Scholar
Maggiore, M. 2007, Gravitational Waves: Volume 1: Theory and ExperimentsCrossRefGoogle Scholar
Merritt, D. & Milosavljević, M. 2005, Living Reviews in Relativity, 8,CrossRefGoogle Scholar
Mikkola, S. & Valtonen, M. J. 1992, MNRAS, 259, 115 CrossRefGoogle Scholar
Mikkola, S. & Aarseth, S. J. 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439 CrossRefGoogle Scholar
Mikkola, S. & Tanikawa, K. 1999, MNRAS, 310, 745 CrossRefGoogle Scholar
Mikkola, S. & Merritt, D. 2006, MNRAS, 372, 219 CrossRefGoogle Scholar
Mikkola, S. & Merritt, D. 2008, AJ, 135, 2398 CrossRefGoogle Scholar
Preto, M. & Tremaine, S. 1999, AJ, 118, 2532 CrossRefGoogle Scholar
Peters, P. C. & Mathews, J. 1963, Physical Review, 131, 435 CrossRefGoogle Scholar
Quinlan, G. D. 1996, New Astronomy, 1, 35 CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105 CrossRefGoogle Scholar
White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341 CrossRefGoogle Scholar