Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T06:28:16.956Z Has data issue: false hasContentIssue false

Long-Range Interaction Potential of Open Shell Atoms with Neutral Molecules : Application to the Calculation of the Rate Constant for the C2H(2Σ+)+O(3P) Reaction

Published online by Cambridge University Press:  21 December 2011

Yuri Georgievskii
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439
Stephen J. Klippenstein
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An accurate knowledge of the long-range interaction potential for the ground and first few excited electronic states is needed for quantitative prediction of the rate coefficients for astrochemical reactions at low temperatures. Some reactions important for astrochemical modeling include an open-shell atom as one of the fragments. Due to the interplay between the spin-orbit and quadrupole interactions such reactions require a special treatment. In this paper we derive the general expressions for the energy levels for such systems, apply them to the C2H(2Σ+)+O(3P) reaction, and compare the results with ab initio calculations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Wakelam, V., Smith, I. W. M., Herbst, E., Troe, J., Geppert, W., Linnartz, H., Öberg, K., Roueff, E., Agúndez, M., Pernot, P., Cuppen, H. M., Loison, J. C., & Talbi, D.Space Sci. Rev. 2010.Google Scholar
Miller, J. A. & Klippenstein, S. J.J. Phys. Chem. A 2006, 110, 10528.Google Scholar
Georgievskii, Y. & Klippenstein, S. J.J. Chem. Phys. 2005, 122, 194103.Google Scholar
Clary, D. C.Ann. Rev. Phys. Chem. 1990, 41, 61.Google Scholar
Troe, J.Adv. Chem. Phys. 1997, 101, 819.Google Scholar
Gentry, W. R. & Giese, C. F.J. Chem. Phys. 1977, 67, 2355.Google Scholar
Landau, L. D. & Lifshitz, E. M.Quantum Mechanics; Pergamon Press: New York, 1991.Google Scholar
Dunning, T. H., J. Chem. Phys. 1989, 90, 1007.Google Scholar
Celani, P. & Werner, H.-J.J. Chem. Phys. 2000, 112, 5546.Google Scholar
Molpro, version 2010.1, a package of ab initio programs. Werner, H.-J., Knowles, P. J., Manby, F. R., Schütz, M., Celani, P., Knizia, G., Korona, T., Lindh, R., Mitrushenkov, A., Rauhut, G., Adler, T. B., Amos, R. D., Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Goll, E., Hampel, C., Hesselmann, A., Hetzer, G., Hrenar, T., Jansen, G., Köppl, C., Liu, Y., Lloyd, A. W., Mata, R. A., May, A. J., McNicholas, S. J., Meyer, W., Mura, M. E., Nicklass, A., Palmieri, P., Pflüger, K., Pitzer, R., Reiher, M., Shiozaki, T., Stoll, H., Stone, A. J., Tarroni, R., Thorsteinsson, T., Wang, M., & Wolf, A. 2010.Google Scholar
Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B.Molecular Theory of Gases and Liquids; John Wiley & Sons: New York, 1967.Google Scholar
Georgievskii, Y. & Klippenstein, S. J.J. Chem. Phys. 2003, 118, 5442.Google Scholar