Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T08:27:14.464Z Has data issue: false hasContentIssue false

Low-Mass and Metal-Poor Gamma-Ray Burst Host Galaxies

Published online by Cambridge University Press:  01 June 2008

Sandra Savaglio*
Affiliation:
Max-Planck Institute for Extraterrestrial Physics, Giessenbachstr., PF 1312, D-85741, Garching bei München, Germany email: savaglio@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-ray bursts (GRBs) are cosmologically distributed, very energetic and very transient sources detected in the γ-ray domain. The identification of their x-ray and optical afterglows allowed so far the redshift measurement of 150 events, from z = 0.01 to z = 6.29. For about half of them, we have some knowledge of the properties of the parent galaxy. At high redshift (z > 2), absorption lines in the afterglow spectra give information on the cold interstellar medium in the host. At low redshift (z < 1.0) multi-band optical-NIR photometry and integrated spectroscopy reveal the GRB host general properties. A redshift evolution of metallicity is not noticeable in the whole sample. The typical value is a few times lower than solar. The mean host stellar mass is similar to that of the Large Magellanic Cloud, but the mean star formation rate is five times higher. GRBs are discovered with γ-ray, not optical or NIR, instruments. Their hosts do not suffer from the same selection biases of typical galaxy surveys. Therefore, they might represent a fair sample of the most common galaxies that existed in the past history of the universe, and can be used to better understand galaxy formation and evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Berger, E., Penprase, B. E., Cenko, S. B., Kulkarni, S. R., Fox, D. B., Steidel, C. C., & Reddy, N. A. 2006, ApJ, 642, 979CrossRefGoogle Scholar
Bloom, J. S., et al. , 2008, ArXiv e-prints, 803, arXiv:0803.3215Google Scholar
Christensen, L., Hjorth, J., & Gorosabel, J. 2004, A&A, 425, 913Google Scholar
Colgate, S. A. 1968, Canadian Journal of Physics, 46, 476CrossRefGoogle Scholar
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 644, 813CrossRefGoogle Scholar
Fynbo, J. P. U., et al. , 2006, A&A, 451, L47Google Scholar
Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., & Møller, P. 2008, ArXiv e-prints, 801, arXiv:0801.3273Google Scholar
Gorosabel, J., et al. , 2005, A&A, 444, 711Google Scholar
Harwit, M., & Salpeter, E. E. 1973, ApJ, 186, L37CrossRefGoogle Scholar
Juneau, S., et al. , 2005, ApJ, 619, L135CrossRefGoogle Scholar
Kann, D. A., Klose, S., & Zeh, A. 2006, ApJ, 641, 993CrossRefGoogle Scholar
Kawai, N., et al. , 2006, Nature, 440, 184CrossRefGoogle Scholar
Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183CrossRefGoogle Scholar
Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJ, 182, L85CrossRefGoogle Scholar
Küpcü Yoldaş, A., Greiner, J., & Perna, R. 2006, A&A, 457, 115Google Scholar
Le Floc'h, E., et al. , 2003, A&A, 400, 499Google Scholar
Maiolino, R., et al. , 2008, ArXiv e-prints, 806, arXiv:0806.2410Google Scholar
Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., Steidel, C. C., Adelberger, K. L., Frail, D. A., Costa, E., & Frontera, F. 1997, Nature, 387, 878CrossRefGoogle Scholar
Prochaska, J. X., et al. , 2004, ApJ, 611, 200CrossRefGoogle Scholar
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. 2007, ApJ, 666, 267CrossRefGoogle Scholar
Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M. 2006, ApJ, 653, 1004CrossRefGoogle Scholar
Savage, B. D. & Sembach, K. R. 1996, ARA&A, 34, 279Google Scholar
Savaglio, S. 2006, New Journal of Physics, 8, 195CrossRefGoogle Scholar
Savaglio, S., et al. , 2005, ApJ, 635, 260CrossRefGoogle Scholar
Savaglio, S., Fall, S. M., & Fiore, F. 2003, ApJ, 585, 638CrossRefGoogle Scholar
Savaglio, S., Budavári, T., Glazebrook, K., Le Borgne, D., Le Floc'h, E., Chen, H.-W., Greiner, J., & Yoldas, A. K. 2007, The Messenger, 128, 47Google Scholar
Savaglio, S., Glazebrook, K., & Le Borgne, D. 2008, ArXiv e-prints, 803, arXiv:0803.2718Google Scholar
Sofia, S. & van Horn, H. M. 1974, ApJ, 194, 593CrossRefGoogle Scholar
Sommer-Larsen, J. & Fynbo, J. P. U. 2008, MNRAS, 385, 3CrossRefGoogle Scholar
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, ApJ, 462, L17CrossRefGoogle Scholar
Tremonti, C. A., et al. , 2004, ApJ, 613, 898CrossRefGoogle Scholar