Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T11:10:38.206Z Has data issue: false hasContentIssue false

Luminous and dark matter density profiles in the inner regions of a group-scale lens at z = 0.6

Published online by Cambridge University Press:  04 June 2020

Mônica Tergolina
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Cristina Furlanetto
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Marina Trevisan
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Física Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil email: monica.tergolina@ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Density profiles of galaxy groups can provide an insight on how large-scale structure in the Universe formed and evolved, since galaxy groups bridge the gap between individual galaxies and galaxy clusters. Studying the galaxy group that is gravitational lensing HELMS18, a submillimeter galaxy at z = 2.39 from the Herschel’s HerMES Large Mode Survey (HELMS), we aim to probe the total density profile by combining strong gravitational lensing with kinematics of the centrally-located galaxies and kinematics of the group members. We have high-resolution data of HELMS18 obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and multi-object spectroscopic data of the group members from Gemini-GMOS. Our main goal is to match these observations to probe the DM and stellar density profiles and to establish a complete description of this galaxy group.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Amvrosiadis, A., Eales, S. A., Negrello, M., Marchetti, L., Smith, M. W. L., Bourne, N., Clements, D. L., De Zotti, G., et al. 2018, MNRAS, 475, 4939CrossRefGoogle Scholar
Bartelmann, M., Limousin, M., Meneghetti, M., & Schmidt, R. 2013, Space Science Reviews, 177, 3CrossRefGoogle Scholar
Dye, S., Furlanetto, C., Dunne, L., Eales, S. A., Negrello, M., Nayyeri, H., van der Werf, P. P., Serjeant, S., et al. 2018, MNRAS, 476, 438310.1093/mnras/sty513CrossRefGoogle Scholar
Nayyeri, H., Keele, M., Cooray, A., Riechers, D. A., Ivison, R. J., Harris, A. I, Frayer, D. T., Baker, A. J., et al. 2016, ApJ 823, 1710.3847/0004-637X/823/1/17CrossRefGoogle Scholar
Newman, J. A., Cooper, M. C., Davis, M., Faber, S. M., Coil, A. L., Guhathakurta, P., Koo, D. C., Phillips, A. C., et al. 2013, ApJS, 208, 5CrossRefGoogle Scholar
Sand, D. J., Treu, T., Ellis, R. S., Smith, G. P., & Kneib, J.-P. 2008, ApJ, 674, 711CrossRefGoogle Scholar