Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T12:46:33.703Z Has data issue: false hasContentIssue false

Machine learning for the extragalactic astronomy educational manual

Published online by Cambridge University Press:  23 December 2021

Maksym Vasylenko
Affiliation:
Main Astronomical Observatory of the National Academy of Sciences of Ukraine 27 Akademik Zabolotnyi St., Kyiv, 03143 Ukraine emails: daria@mao.kiev.ua, vasmax@mao.kiev.ua
Daria Dobrycheva
Affiliation:
Main Astronomical Observatory of the National Academy of Sciences of Ukraine 27 Akademik Zabolotnyi St., Kyiv, 03143 Ukraine emails: daria@mao.kiev.ua, vasmax@mao.kiev.ua
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We evaluated a new approach to the automated morphological classification of large galaxy samples based on the supervised machine learning techniques (Naive Bayes, Random Forest, Support Vector Machine, Logistic Regression, and k-Nearest Neighbours) and Deep Learning using the Python programming language. A representative sample of ∼315000 SDSS DR9 galaxies at z < 0.1 and stellar magnitudes r < 17.7m was considered as a target sample of galaxies with indeterminate morphological types. Classical machine learning methods were used to binary morphologically classification of galaxies into early and late types (96.4% with Support Vector Machine). Deep machine learning methods were used to classify images of galaxies into five visual types (completely rounded, rounded in-between, smooth cigar-shaped, edge-on, and spiral) with the Xception architecture (94% accuracy for four classes and 88% for cigar-like galaxies). These results created a basis for educational manual on the processing of large data sets in the Python programming language, which is intended for students of the Ukrainian universities.

Type
Poster Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babyk, I., & Vavilova, I. 2014, Ap&SS, 349, 415 Google Scholar
Ball, N.M., & Brunner, R.J. 2010, Int. J. Modern Phys. D, 19, 1049 10.1142/S0218271810017160CrossRefGoogle Scholar
Chesnok, N.G., Sergeev, S.G., Vavilova, I.B. 2009, Kinemat. Phys. Cel. Bodies, 25, 107 CrossRefGoogle Scholar
Conselice, C.J., Bluck, A.F.L., Mortlock, A. et al. 2014, MNRAS, 444, 1125 10.1093/mnras/stu1385CrossRefGoogle Scholar
Dobrycheva, D.V. 2013, Odessa Astron. Publ., 26, 187 Google Scholar
Dobrycheva, D.V., Vavilova, I.B., Melnyk, O.V. et al. 2018, Kinemat. Phys. Cel. Bodies, 34, 290 CrossRefGoogle Scholar
Elyiv, A.A., Melnyk, O.V., Vavilova, I.B. et al. 2020, AA, 635, A124 10.1051/0004-6361/201936883CrossRefGoogle Scholar
Khramtsov, V., Dobrycheva, D.V., Vasylenko, M.Y. et al. 2019, Odessa Astron. Publ., 32, 21 CrossRefGoogle Scholar
Khramtsov, V., Dobrycheva, D.V., Vasylenko, M.Yu. et al. 2020, AA (submitted for review)Google Scholar
Melnyk, O.V., Dobrycheva, D.V., & Vavilova, I.B. 2012, Astrophysics, 55, 293 10.1007/s10511-012-9236-7CrossRefGoogle Scholar
Pulatova, N.G., Vavilova, I.B., Sawangwit, U. et al. 2015, MNRAS, 447, 2209 10.1093/mnras/stu2556CrossRefGoogle Scholar
Vasylenko, M. Y., Dobrycheva, D. V., Vavilova, I. B. et al. 2019, Odessa Astron. Publ., 32, 46 10.18524/1810-4215.2019.32.182538CrossRefGoogle Scholar
Vasylenko, M., Dobrycheva, D., Khramtsov, V., et al. 2020, Communications of BAO, 67, 354 Google Scholar
Vasylenko, A.A., Vavilova, I.B., & Pulatova, N.G. 2020, Astron. Nachr., 341, 801 10.1002/asna.202013783CrossRefGoogle Scholar
Vavilova, I.B., Dobrycheva, D.V., Vasylenko, M.Y. et al. 2020, arXiv eprints 1712.08955v2Google Scholar
Vavilova, I., Dobrycheva, D., Vasylenko, M. et al. 2020, in: P. Skoda & F. Adam, Knowledge Discovery in Big Data from Astronomy and Earth Observation (Elsevier), p. 30710.1016/B978-0-12-819154-5.00028-XCrossRefGoogle Scholar
Vavilova, I., Pakuliak, L., Babyk, I. et al. 2020, in: P. Skoda & F. Adam, Knowledge Discovery in Big Data from Astronomy and Earth Observation (Elsevier), p. 5710.1016/B978-0-12-819154-5.00015-1CrossRefGoogle Scholar
Vol’Vach, A.E., Vol’Vach, L.N., Kut’kin, A.M., et al. 2011, ARep, 55, 608 Google Scholar