Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T05:55:47.861Z Has data issue: false hasContentIssue false

Maser emission in planetary nebulae

Published online by Cambridge University Press:  01 March 2007

Yolanda Gómez*
Affiliation:
Centro de Radioastronomí a y Astrofí sica, UNAM, A.P. 3-72, C.P. 58090, México email: y.gomez@astrosmo.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars at the top of the asymptotic giant branch (AGB) can exhibit maser emission from molecules like SiO, H2O and OH. These masers appear in general stratified in the envelope, with the SiO masers close to the central star and the OH masers farther out in the envelope. As the star evolves to the planetary nebula (PN) phase, mass-loss stops and ionization of the envelope begins, making the masers disappear progressively. The OH masers in PNe can be present in the envelope for periods of ~1000 years but the H2O masers can survive only hundreds of years. Then, H2O maser emission is not expected in PNe and its detection suggests that these objects are in a very particular moment of its evolution in the transition from AGB to PNe. We discuss the unambiguous detection of H2O maser emission in two planetary nebulae: K 3-35 and IRAS 17347-3139. The water-vapor masers in these PNe are tracing disk-like structures around the core and in the case of K3-35 the masers were also found at the tip of its bipolar lobes. Kinematic modeling of the H2O masers in both PNe suggest the existence of a rotating and expanding disk. Both PNe exhibit a bipolar morphology and in the particular case of K 3-35 the OH masers are highly polarized close to the core in a disk-like structure. All these observational results are consistent with the models where rotation and magnetic fields have been proposed to explain the asymmetries observed in planetary nebulae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aaquist, O. B. 1993 A&A 267 260Google Scholar
Balick, B. & Frank, A. 2002 ARA&A 40, 439Google Scholar
Bujarrabal, V. 2006 Planetary Nebulae in our Galaxy, IAU Proceedings 234, 193Google Scholar
Bowers, P. F. & Knapp, G. R. 1989 ApJ 347, 325CrossRefGoogle Scholar
Caswell, J. L. 1974, IAU Proceedings. Ed: Kerr, F. J. and Simonson, S. C. 60, 423Google Scholar
Caswell, J. L., Haynes, R. F., Goss, W. M., & Mebold, U. 1981 AuJPh 34, 333Google Scholar
Davis, L. E., Seaquist, E. R., & Purton, C. R 1979, ApJ 230, 434CrossRefGoogle Scholar
de Gregorio-Monsalvo, I., Gómez, Y., Anglada, G., Cesaroni, R., Miranda, L. F., Gómez, J. F., & Torrelles, J. M. 2004, ApJ 601, 921CrossRefGoogle Scholar
Elitzur, M. 1992, ARA&A 30, 75Google Scholar
Gómez, Y., Miranda, L. F., Anglada, G. & Torrelles, J. M. 2003, Planetary Nebulae, IAU Proceedings 209, 263CrossRefGoogle Scholar
Gómez, Y., Moran, J. M., & Rodríguez, L. F. 1990, RevMexAA 20, 55Google Scholar
Gómez, Y., Rodríguez, L. F., & Garcí a-Barreto, J. A. 1987, RevMexAA 14, 560Google Scholar
Gómez, Y., Tafoya, D., Anglada, G., et al. 2005 Memorie della Societa Astronomica Italiana 76, 472Google Scholar
Huggins, P. J., Bachiller, R., Cox, P. & Forrveille, T. 1996, A&A 315, 284Google Scholar
Johansson, L. E. B., Andersson, C., Goss, W. M., & Winnberg, A. 1977, A&AS 28 199Google Scholar
Josselin, E. & Bachiller, R. 2003, A&A 397, 659Google Scholar
Kohoutek, L. 2001, A&A 378, 843Google Scholar
Kwok, S. 1993, ARA&A 31, 63Google Scholar
Lépine, J. R. D. & Rieu, N. Q. 1974, A&A 36, 469Google Scholar
Lewis, B. M. 1989, ApJ 33, 234CrossRefGoogle Scholar
Manchado, A. 2004, ASP Conference Proceedings 313, 3Google Scholar
Miranda, L. F., Gómez, Y., Anglada, G. & Torrelles, J. M. 2001, Nature 414, 284Google Scholar
Mufson, S. L., Lyon, J., Marionni, P. A. 1975, ApJ (Letters) 201, L85CrossRefGoogle Scholar
Payne, H. E., Phillips, J. A., & Terzian, Y. 1988 ApJ 326, 368Google Scholar
Reid, M. J., Muhleman, D. O., Moran, J. M., Johnston, K. J., & Schwartz, P. 1977, ApJ 214, 60CrossRefGoogle Scholar
Reid, M. J. & Moran, J. M. 1981, ARA&A 19, 231Google Scholar
Rodríguez, L. F., Gómez, Y. & Garcí a-Barreto, J. A. 1985, RevMexAA 11, 139Google Scholar
Sánchez-Contreras, C., Le Mignant, D., Sahai, R., Chaffee, F. H., & Morrism, M. 2006, Planetary Nebulae in our Galaxy, IAU Proceedings 234, 71CrossRefGoogle Scholar
Sevenster, M. N., van Langevelde, H. J., Moody, R. A., Chapman, J. M., Habing, H. J., & Killeen, N. E. B. 2001, A&A 366, 481Google Scholar
Shepherd, M. C., Cohen, R. J., Gaylard, M. J., & West, M. E. 1990 Nature 344, 6266CrossRefGoogle Scholar
Suárez, O., Gómez, J. F., & Morata, O. 2007, A&A in pressGoogle Scholar
Tafoya, D., Gómez, Y., Anglada, G. et al. 2007a, AJ 133, 364CrossRefGoogle Scholar
Tafoya, D., et al. 2007b, in preparationGoogle Scholar
Tamura, S. & Kazes, I. 1989 Planetary Nebulae, IAU Proceedings 131, 209CrossRefGoogle Scholar
te Lintel Hekkert, P. 1991 A&A 248, 209Google Scholar
Uscanga, L. et al. 2007 in preparationGoogle Scholar
Zijlstra, A. A. et al. 1989, A&A 217, 157Google Scholar