Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:47:59.769Z Has data issue: false hasContentIssue false

Mega (metal-poor) not so much : Non-LTE spectroscopic stellar parameters and abundance determination of Ultra metal-poor stars

Published online by Cambridge University Press:  02 August 2018

Rana Ezzeddine
Affiliation:
Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, East Lansing, MI 48824, USA. email: ranae@mit.edu Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Tatyana Sitnova
Affiliation:
Institute of Astronomy, Russian academy of Sciences, Pyatniskaya 48, 119017, Moscow, Russia
Anna Frebel
Affiliation:
Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, East Lansing, MI 48824, USA. email: ranae@mit.edu Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Lyudmilla Mashonkina
Affiliation:
Institute of Astronomy, Russian academy of Sciences, Pyatniskaya 48, 119017, Moscow, Russia
Bertrand Plez
Affiliation:
Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, UMR 5299, Montpellier, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present Non-Local Thermodynamic Equilibrium (Non-LTE) abundance corrections for Mg, Ca, and Fe in 12 ultra metal-poor (UMP) stars ([Fe/H] < −4.00). We show that they increase in absolute value toward the lower metallicity up to 0.45 dex for Mg, 0.30 dex for Ca, and 1.00 dex for Fe. This represents a first step toward a full Non-LTE analysis of chemical species in the UMP stars that will enable us to put useful constraints on the properties of the “First” stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Amarsi, A. M., Lind, K., Asplund, M. et al. 2016, MNRAS, 463, 1518.Google Scholar
Barklem, P. S., Belyaev, A. K., Spielfiedel, A. et al. 2012, A&A, 541, A80.Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531.Google Scholar
Bromm, V. 2013, Reports on Progress in Physics 76, 11, 112901.Google Scholar
Butler, K. & Giddings, J. 1985, Newsletter on the analysis of astronomical spectra, No. 9, University of London.Google Scholar
Carlsson, M. 1986, Uppsala Astronomical Observatory Reports 33.Google Scholar
Carlsson, M. 1992, vol. 26 of Astronomical Society of the Pacific Conference Series, p. 499.Google Scholar
Ezzeddine, R., Frebel, A., & Plez, B. 2017, ApJ, 847, 142.Google Scholar
Frebel, A. & Norris, J. E. 2015, ARA&A, 53, 631.Google Scholar
Gustafsson, B., Bell, R. A., Eriksson, K. et al. 1957, A&A, 42, 407.Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K. et al. 2008, A&A, 486, 951.Google Scholar
Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50.Google Scholar
Mashonkina, L., Gehren, T., Shi, J.-R. et al. 2011, A&A, 528, A87.Google Scholar
Mashonkina, L. 2013, A&A, 550, A28.Google Scholar
Mashonkina, L., Sitnova, T., & Belyaev, A. K. 2017, A&A, 605, 53.Google Scholar
Mitrushchenkov, A., Guitou, M., Belyaev, A. K., et al. 2017, J. Chem. Phys., 146, 014304.Google Scholar
Nordlander, T., Amarsi, A. M. Lind, et al. 2017, A&A, 597, A6.Google Scholar
Placco, V. M., Frebel, A., Lee, Y. S. et al. 2015, ApJ, 809,136.Google Scholar
Ryabchikova, T., Piskunov, N., Pakhomov, Y., et al. 2016, MNRAS, 456, 1221.Google Scholar
Rybicki, G. B. & Hummer, D. G. 1991, A&A, 245, 171.Google Scholar
Rybicki, G. B. & Hummer, D. G. 1992, A&A, 262, 209.Google Scholar
Sitnova, T., Zhao, G., Mashonkina, L. et al., 2015, ApJ, 808, 108.Google Scholar
Tominaga, N., Iwamoto, N., & Nomoto, K. 2014, ApJ, 785, 98.Google Scholar
Zhao, G., Mashonkina, L., Yan, H. L. et al. 2016, ApJ, 833, 225.Google Scholar