Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:17:55.119Z Has data issue: false hasContentIssue false

Morphological properties of massive galaxies at high−z from GOODS

Published online by Cambridge University Press:  01 July 2007

Swara Ravindranath
Affiliation:
Inter-University of Astronomy & Astrophysics, Pune, Maharashtra, India email: swara@iucaa.ernet.in
E. Daddi
Affiliation:
CEA Saclay/Service d'Astrophysique, Gif-sur-Yvette Cedex, France email: edaddi@cea.fr
M. Giavalisco
Affiliation:
University of Massachusetts, Amherst, Massacheussetts, USA email: mauro@astro.umass.edu
H. C. Ferguson
Affiliation:
Space Telescope Science Institute, Baltimore, Maryland, USA email: ferguson@stsci.edu
M. E. Dickinson
Affiliation:
National Optical Astronomy Observatory, Tucson, Arizona, USA email: med@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used the BzK-selection to identify a composite population of passive, and star-forming galaxies at redshifts 1.4 ≤ z ≤ 2.5 from the Great Observatories Origins Deep Survey (GOODS). Using an unprecedented large sample of galaxies in this redshift range, we characterize the morphological diversity through the analysis of the surface-brightness profile shapes for 171 galaxies with passive SEDs, and 1068 star-forming galaxies. We find that the z ~ 2 galaxies display a wide range of morphologies, from spheroidals to disk-like. Interestingly, the galaxies with passively-evolving SEDs predominantly have steep profiles as seen for the classical bulges at low redshifts, although they are very compact with re < 3 kpc. The star-forming galaxies on the other hand exhibit mostly disk-like and merger morphologies, and have sizes comparable to their low−z counterparts. Our results emphasize the need for an unbiased selection in order to reveal the morphological diversities, and range of galaxy properties at high redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Lilly, S. et al. 1998, ApJ 500, 75CrossRefGoogle Scholar
Stanford, S. A., et al. 2004, AJ 127, 131CrossRefGoogle Scholar
Ravindranath, S., et al. 2004, ApJ 604, L9Google Scholar
Barden, M., et al. 2005, ApJ 635, 959Google Scholar
Giavalisco, M., Steidel, C. C., & Macchetto, D. F. 1996, ApJ 470, 189CrossRefGoogle Scholar
Lotz, J. M., Madau, P., Giavalisco, M., Primack, J., & Ferguson, H. C. 2006, ApJ 636, 592CrossRefGoogle Scholar
Ravindranath, S., et al. 2006, ApJ 652, 963Google Scholar
Giavalisco, M., et al. 2004, ApJ 600, L93CrossRefGoogle Scholar
Franx, M., et al. 2003, ApJ 587, 79CrossRefGoogle Scholar
Daddi, E., et al. 2004, ApJ 617, 746Google Scholar
Daddi, E., et al. 2007, arXiv:0705.2831Google Scholar
Sérsic, J. L. 1968, Atlas de Galaxias Australes, (Córdoba: Obs. Astron., Univ. Nac. Córdoba)Google Scholar
Shen, S., et al. 2003, MNRAS 343, 978CrossRefGoogle Scholar
Daddi, E., et al. 2005, ApJ 626, 680Google Scholar
Trujillo, I., et al. 2006, MNRAS 373, 36CrossRefGoogle Scholar
Zirm, A., et al. 2007, ApJ 656, 66CrossRefGoogle Scholar
Robertson, B., et al. 2006, ApJ 645, 986CrossRefGoogle Scholar
Khochfar, S. & Burkert, A. 2003, ApJ 597, 117Google Scholar
Khochfar, S. & Silk, J. 2006, ApJ 648, 21CrossRefGoogle Scholar