Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:31:15.875Z Has data issue: false hasContentIssue false

Multifractal signatures of gravitational waves detected by LIGO

Published online by Cambridge University Press:  30 December 2019

Daniel B. de Freitas
Affiliation:
Departamento de Fsica, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil email: danielbrito@fisica.ufc.br
Mackson M. F. Nepomuceno
Affiliation:
Departamento de Ciência e Tecnologia, Universidade Federal Rural do Rio Grande do Norte-UFERSA, Campus Caraúbas, Rio Grande do Norte, Brazil
J. R. De Medeiros
Affiliation:
Departamento de Fsica Teórica e Experimental, Universidade Federal do Rio Grande do Norte-UFRN, Rio Grande do Norte, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze the data from the 6 gravitational waves signals detected by LIGO through the lens of multifractal formalism using the MFDMA method, as well as shuffled and surrogate procedures. We identified two regimes of multifractality in the strain measure of the time series by examining long memory and the presence of nonlinearities. The moment used to divide the series into two parts separates these two regimes and can be interpreted as the moment of collision between the black holes. An empirical relationship between the variation in left side diversity and the chirp mass of each event was also determined.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, Classical and Quantum Gravity, 32, 074001 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters, 116, 061102 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters, 116, 131102 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters, 116, 131103 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Classical and Quantum Gravity, 33, 134001 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters, 116, 241103 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, ApJL, 826, L13 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Physical Review Letters, 118, 221101 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Physical Review Letters, 119, 141101 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Physical Review Letters, 119, 161101 CrossRefGoogle Scholar
The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B. P., et al. 2017, arXiv:1711.05578Google Scholar
Alessio, E., Carbone, A., Castelli, G., & Frappietro, V. 2002, European Physical Journal B, 27, 197 Google Scholar
Arneodo, A., Bacry, E., Graves, P. V., & Muzy, J. F. 1995, Physical Review Letters, 74, 3293 CrossRefGoogle Scholar
Ashkenazy, Y., Baker, D. R., Gildor, H., & Havlin, S. 2003, Geophysics Research Letters, 30, 2146 CrossRefGoogle Scholar
Blanchet, L., Damour, T., Iyer, B. R., Will, C. M., & Wiseman, A. G. 1995, Physical Review Letters, 74, 3515 CrossRefGoogle Scholar
Coyne, R., Corsi, A., & Owen, B. J. 2016, Physical Review D, 93, 104059 CrossRefGoogle Scholar
de Freitas, D. B., Nepomuceno, M. M. F., de Moraes Junior, P. R. V., et al. 2016, ApJ, 831, 87 CrossRefGoogle Scholar
de Freitas, D. B., Nepomuceno, M. M. F., Gomes de Souza, M., et al. 2017, ApJ, 843, 103CrossRefGoogle Scholar
Eghdami, I., Panahi, H., & Movahed, S. M. S. 2017, arXiv:1704.08599Google Scholar
Feder, J. 2013. Fractals. (Springer Science & Business Media)Google Scholar
Gu, G.-F., & Zhou, W.-X. 2010, Physical Review E, 82, 011136 CrossRefGoogle Scholar
Hurst, H. E. 1951, Transactions of the American Society of Civil Engineers, 116, 770 Google Scholar
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., et al. 2002, Physica A Statistical Mechanics and its Applications, 316, 87 CrossRefGoogle Scholar
Mali, P. 2016, Journal of Statistical Mechanics: Theory and Experiment, 1, 013201 CrossRefGoogle Scholar
Muzy, J. F., Bacry, E., & Arneodo, A. 1991, Physical Review Letters, 67, 3515 CrossRefGoogle Scholar
Muzy, J. F., Bacry, E., & Arneodo, A. 1994, International Journal of Bifurcation and Chaos, 4, 245 CrossRefGoogle Scholar
Norouzzadeh, P., Dullaert, W., & Rahmani, B. 2007, Physica A Statistical Mechanics and its Applications, 380, 333 CrossRefGoogle Scholar
Peng, C.-K., Buldyrev, S. V., Havlin, S., et al. 1994, Physical Review E, 49, 1685 CrossRefGoogle Scholar
Tanna, H. J., & Pathak, K. N. 2014, Astrophysics and Space Science, 350, 47 CrossRefGoogle Scholar