Published online by Cambridge University Press: 01 July 2015
We propose a computationally feasible estimator for the needlet trispectrum, which develops earlier work on the bispectrum by Donzelli et al. (2012). Our proposal seems to enjoy a number of useful properties, in particular a) the construction exploits the localization properties of the needlet system, and hence it automatically handles masked regions; b) the procedure incorporates a quadratic correction term to correct for the presence of instrumental noise and sky-cuts; c) it is possible to provide analytic results on its statistical properties, which can serve as a guidance for simulations. The needlet trispectrum we present here provides the natural building blocks for the efficient estimation of nonlinearity parameters on CMB data, and in particular for the third order constants gNL and τNL.