Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T22:30:09.754Z Has data issue: false hasContentIssue false

New insight on the far-UV SED and He ii emission from low metallicity galaxies

Published online by Cambridge University Press:  04 June 2020

Daniel Schaerer
Affiliation:
Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland email: daniel.schaerer@unige.ch CNRS, IRAP, 14 Avenue E. Belin, 31400 Toulouse, France
Yuri Izotov
Affiliation:
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 14-b Metrolohichna str., Kyiv, 03143, Ukraine
Tassos Fragos
Affiliation:
Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland email: daniel.schaerer@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the ionizing spectrum of low-metallicity galaxies is of great importance for modeling and interpreting emission line observations of early/distant galaxies.

Although a wide suite of stellar evolution, atmosphere, population synthesis, and photoionization models, taking many physical processes into account now exist, all models face a common problem: the inability to explain the presence of nebular Heii emission, which is observed in many low metallicity galaxies, both in UV and optical spectra. Several possible explanations have been proposed in the literature, including Wolf-Rayet (WR) stars, binaries, very massive stars, X-ray sources, or shocks. However, none has so far been able to explain the major observations.

We briefly discuss the He ii problem, available empirical data, and observed trends combining X-ray, optical and other studies. We present a simple and consistent physical model showing that X-ray binaries could explain the long-standing nebular Heii problem. Our model, described in Schaerer et al. (2019), successfully explains the observed trends and strength of nebular He ii emission in large samples of low metallicity galaxies and in individual galaxies, which have been studied in detail and with multi-wavelength observations. Our results have in particular important implications for the interpretation of galaxy spectra in the early Universe, which will be obtained with upcoming and future facilities.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Berg, D. A., Erb, D. K., Auger, M. W., Pettini, M., & Brammer, G. B. 2018, ApJ, 859, 16410.3847/1538-4357/aab7faCrossRefGoogle Scholar
Brorby, M., Kaaret, P., Prestwich, A., & Mirabel, I. F. 2016, MNRAS, 457, 4081CrossRefGoogle Scholar
Cassata, P., Le Fèvre, O., Charlot, S., et al. 2013, A&A, 556, A68Google Scholar
Cervinõ, M., Mas-Hesse, M., & Kunth, D. 2002, A&A, 392, 19Google Scholar
Douna, V. M., Pellizza, L. J., Mirabel, I. F., & Pedrosa, S. E. 2015, A&A, 579, A44Google Scholar
Fragos, T., Lehmer, B., Tremmel, M., et al. 2013a, ApJ, 764, 41CrossRefGoogle Scholar
Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A., & Basu-Zych, A. 2013b, ApJL, 776, L3110.1088/2041-8205/776/2/L31CrossRefGoogle Scholar
Garnett, D. R., Kennicutt, R. C. Jr., Chu, Y.-H., & Skillman, E. D., 1991, ApJ, 373, 458CrossRefGoogle Scholar
Götberg, Y., de Mink, S. E., Groh, J. H., et al. 2018, A&A, 615, A78Google Scholar
Heap, S. R., Hubeny, I., Bouret, J.-C., & Lanz, T. 2019, in Radiative signatures from the cosmos, ed. K. Werner & T. Rauch, ASP Conference Series, in pressGoogle Scholar
Izotov, Y. I., Guseva, N. G., Fricke, K. J., & Henkel, C. 2016, MNRAS, 462, 442710.1093/mnras/stw1973CrossRefGoogle Scholar
Kaaret, P. & Corbel, S. 2019, ApJ, 697, 950CrossRefGoogle Scholar
Kehrig, C., Vlchez, J. M., Pérez-Montero, E., et al. 2015, ApJL, 801, L28CrossRefGoogle Scholar
Lebouteiller, V., Péquignot, D., Cormier, D., et al. 2017, A&A, 602, A45Google Scholar
Madau, P. & Fragos, T. 2017, ApJ, 840, 3910.3847/1538-4357/aa6af9CrossRefGoogle Scholar
Mineo, S.et al. 2012, MNRAS, 419, 209510.1111/j.1365-2966.2011.19862.xCrossRefGoogle Scholar
Nanayakkara, T.et al. 2019, A&A, 624, A89Google Scholar
Pakull, M. W. & Angebault, L. P. 1986, Nature, 322, 511 EP10.1038/322511a0CrossRefGoogle Scholar
Pakull, M. & Mirioni, L. 2012, arXiv:0202488Google Scholar
Schaerer, D. 2002, A&A, 382, 28Google Scholar
Schaerer, D., Fragos, T., & Izotov, Y. I. 2019, A&A, 622, L10Google Scholar
Shirazi, M. & Brinchmann, J. 2012, MNRAS, 421, 1043CrossRefGoogle Scholar
Senchyna, P.et al. 2017, MNRAS, 472, 260810.1093/mnras/stx2059CrossRefGoogle Scholar
Stanway, E. R. & Eldridge, J. J. 2018, arXiv e-prints, 1811.03856Google Scholar
Stark, D. P. 2016, ARAA, 54, 761CrossRefGoogle Scholar
Szécsi, D.et al. 2015, A&A, 581, A15Google Scholar
Thuan, T. X. & Izotov, Y. I. 2005, ApJS, 161, 24010.1086/491657CrossRefGoogle Scholar
Xiao, L., Stanway, E. R., & Eldridge, J. J. 2018, MNRAS, 477, 904CrossRefGoogle Scholar