Article contents
Nucleosynthesis of the Elements in Faint Supernovae and Hypernovae
Published online by Cambridge University Press: 09 March 2010
Abstract
We review the properties of supernovae (SNe) as a function of the progenitor's mass M. (1) Mup - 10 M⊙ stars are super-AGB stars and resultant electron capture SNe may be Faint supernovae like Type IIn SN 2008S. (2) 10 - 12 M⊙ stars undergo Fe-core collapse to form neutron stars (NSs) and Faint supernovae. (3) 12 M⊙ - MBN stars undergo Fe-core collapse to form NSs and normal core-collapse supernovae. (4) MBN - 90 M⊙ stars undergo Fe-core collapse to form Black Holes. Resultant supernovae are bifurcate into Hypernovae and Faint supernovae. The observed properties of SN 2008ha can be explained with this type of Faint supernovae. (5) 90 - 140 M⊙ stars produce Luminous SNe, like SNe 2007bi and 2006gy. (6) 140 - 300 M⊙ stars become pair-instability supernovae which could be Luminous supernovae (SNe 2007bi and 2006gy). (7) Very massive stars with M ≳ 300 M⊙ undergo core-collapse to form intermediate mass black holes. Some SNe could be more Luminous supernovae (like SN 2006gy).
Keywords
- Type
- Contributed Papers
- Information
- Copyright
- Copyright © International Astronomical Union 2010
References
- 1
- Cited by