Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T13:24:07.743Z Has data issue: false hasContentIssue false

Obscured quasars: the link between star-formation and black hole activity

Published online by Cambridge University Press:  21 March 2013

Vincenzo Mainieri
Affiliation:
ESO, Karl-Schwarschild-Strasse 2, D–85748 Garching bei München, Germany email: vmainier@eso.org
Angela Bongiorno
Affiliation:
INAF–Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio-Catone, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime (<Lbol> ∼ 8 × 1045 erg s−1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We find that at z ∼ 1, ≈ 62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ∼ 2, and 100% at z ∼ 3. We also find that the evolution from z ∼ 1 to z ∼ 3 of the specific star-formation rate of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151CrossRefGoogle Scholar
Brusa, M., Civano, F., Comastri, A.et al. 2010, ApJ, 716, 348CrossRefGoogle Scholar
Bruzual, G. & Charlot, S., 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Cappelluti, N., Brusa, M., Hasinger, G.et al. 2009, A&A, 497, 635Google Scholar
Ciotti, L., Ostriker, J. P., & Proga, D. 2010, ApJ, 717, 708Google Scholar
Daddi, E., Dickinson, M., Morrison, G.et al. 2007, ApJ, 670, 156Google Scholar
Elbaz, D., Daddi, E., Le Borgne, D.et al., 2007, A&A, 468, 33Google Scholar
Genzel, R., Burkert, A., Bouche, N.et al., 2008, ApJ, 687, 59CrossRefGoogle Scholar
Hopkins, P. F. & Hernquist, L. 2009, ApJ, 694, 599CrossRefGoogle Scholar
Johansson, P. H., Naab, T., & Burkert, A. 2009, ApJ, 690, 802CrossRefGoogle Scholar
Jogee, S. 2004, Physics of Active Galactic Nuclei at all Scales, 693, 143Google Scholar
Karim, A., Schinnerer, E., Martinez-Sansigre, A.et al., 2011, ApJ, 730, 61CrossRefGoogle Scholar
Mainieri, V., Bongiorno, A., Merloni, A.et al., 2011, A&A, 535, 80Google Scholar
Marconi, A., Risaliti, G., Gilli, R.et al. 2004, MNRAS, 351, 169CrossRefGoogle Scholar
Noeske, K. G., Weiner, B. J., Faber, S. M.et al. 2007a, ApJ, 660, L43CrossRefGoogle Scholar
Noeske, K. G., Faber, S. M., Weiner, B. J.et al. 2007b, ApJ, 660, L47CrossRefGoogle Scholar
Pannella, M., Carilli, C. L., Daddi, E.et al. 2009, ApJ, 698, L116CrossRefGoogle Scholar
Richards, G. T., Lacy, M., Storrie-Lombardi, L. J.et al. 2006, ApJS, 166, 470CrossRefGoogle Scholar
Rodighiero, G., Cimatti, A., Gruppioni, C.et al. 2010, A&A, 518, L25Google Scholar
Salim, S., Charlot, S., Rich, R. M.et al. 2005, ApJ, 619, L39Google Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776CrossRefGoogle Scholar