Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T18:33:05.808Z Has data issue: false hasContentIssue false

Observations meets theory in clustered star formation

Published online by Cambridge University Press:  11 March 2020

Susanne Pfalzner*
Affiliation:
Jülich Supercomputing Center, Forschungszentrum Jülich 52428 Jülich, Germany email: s.pfalzner@fz-juelich.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form predominantly in groups which display a broad spectrum of masses, sizes, and other properties. Despite this diversity there exist an underlying structure that can constrain cluster formation theories. We show how combining observations with simulations allows us to disclose this underlying structure. One example is the mass-radius relation for young embedded associations which follows ${M_c} = CR_c^\gamma $ with γ = 1.7 ± 0.2.0.2, which is directly related to the mass-radius relation of clumps. Results based on GAIA DR2 have demonstrated that young stellar groups (1–5 Myr) expand and that this expansion process is largely over by an age of 10–20 Myr. Such a behaviour is expected within the gas expulsion scenario. However, the effect of gas expulsion depends strongly on the SFE, the gas expulsion time scale, etc. Here it is demonstrated how existing and upcoming data are able to constrain these parameters and correspondingly the underlying models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allison, R. J. & Goodwin, S. P. 2011, MNRAS, 415, 1967CrossRefGoogle Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, ApJ, 700, L99CrossRefGoogle Scholar
Boily, C. M. & Kroupa, P. 2003, MNRAS, 338, 673CrossRefGoogle Scholar
Fellhauer, M. & Kroupa, P. 2005, ApJ, 630, 879CrossRefGoogle Scholar
Gieles, M. & Portegies Zwart, S. F. 2011, MNRAS, 410, L6CrossRefGoogle Scholar
Jose, J., Herczeg, G. J., Samal, M. R., et al. 2017, ApJ, 836, 98CrossRefGoogle Scholar
Kuhn, M. A., Getman, K. V., Feigelson, E. D., et al. 2017, AJ, 154, 214CrossRefGoogle Scholar
Kuhn, M. A., Hillenbrand, L. A., Sills, A., et al. 2019, ApJ, 870, 32CrossRefGoogle Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ, 285, 141CrossRefGoogle Scholar
Parmentier, G. & Pfalzner, S. 2013, A&A, 549, A132Google Scholar
Pfalzner, S. & Kaczmarek, T. 2013, A&A, 559, A38Google Scholar
Pfalzner, S., Kirk, H., Sills, A., et al. 2016, ApJ, 586, A68Google Scholar
Pfalzner, S., Vincke, K., & Xiang, M. 2015, A&A, 576, A28Google Scholar
Pfalzner, S., Parmentier, G., Steinhausen, M., et al. 2014, ApJ, 794, 147CrossRefGoogle Scholar
Pfalzner, S. 2009, A&A, 498, L37Google Scholar
Tutukov, A. V. 1978, A&A, 70, 57Google Scholar
Urquhart, J. S., Moore, T. J. T., Csengeri, T., et al. 2014, MNRAS, 443, 1555CrossRefGoogle Scholar