Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T02:10:23.208Z Has data issue: false hasContentIssue false

Observed effects of star-planet interaction

Published online by Cambridge University Press:  09 September 2016

Scott J. Wolk
Affiliation:
Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA email: swolk@cfa.harvard.edu, kpoppen@cfa.harvard.edu
Ignazio Pillitteri
Affiliation:
Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA email: swolk@cfa.harvard.edu, kpoppen@cfa.harvard.edu Osservatorio Astronomico di Palermo, piazza del Parlamento 1, I-90134 Palermo, Italy email: pilli@astropa.unipa.it
Katja Poppenhaeger
Affiliation:
Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA email: swolk@cfa.harvard.edu, kpoppen@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since soon after the discovery of hot Jupiters, it had been suspected that interaction of these massive bodies with their host stars could give rise to observable signals. We discuss the observational evidence for star-planet interactions (SPI) of tidal and magnetic origin observed in X-rays and FUV. Hot Jupiters can significantly impact the activity of their host stars through tidal and magnetic interaction, leading to either increased or decreased stellar activity – depending on the internal structure of the host star and the properties of the hosted planet. In HD 189733, X-ray and FUV flares are preferentially in a very restricted range of planetary phases. Matsakos et al. (2015) show, using MHD simulations, planetary gas can be liberated, forming a stream of material that gets compressed and accretes onto the star with a phase lag of 70-90 degrees. This scenario explains many features observed both in X-rays and the FUV (Pillitteri et al. 2015). On the other hand, WASP-18 – an F6 star with a massive hot Jupiter, shows no signs of activity in X-rays or UV. Several age indicators (isochrone fitting, Li abundance) point to a young age (~0.5 –1.0 Gyr) and thus significant activity was expected. In this system, tidal SPI between the star and the very close-in and massive planet appears to destroy the formation of magnetic dynamo and thus nullify the stellar activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Barbieri, M., et al. 2007, A&A, 476, L13 Google Scholar
Favata, F., Flaccomio, E., & Reale, F., et al. 2005, ApJS, 160, 469 CrossRefGoogle Scholar
Fares, R., et al. 2010, MNRAS, 406, 409 CrossRefGoogle Scholar
Fossati, L., Ayres, T. R., & Haswell, , et al. 2014, APSS, 354, 21 Google Scholar
Kashyap, V. L., Drake, J. J., & Saar, S. H. 2008, ApJ, 687, 1339 CrossRefGoogle Scholar
Lanza, A. F. 2008, A&A, 487, 1163 Google Scholar
Maggio, A., et al. 2015, ApJL, 811, L2 CrossRefGoogle Scholar
McCleary, J. E. & Wolk, S. J. 2011, AJ, 141, 201 CrossRefGoogle Scholar
Miller, B. P., Gallo, E., Wright, J. T., & Pearson, E. G. 2015, ApJ, 799, 163 CrossRefGoogle Scholar
Mitra-Kraev, U., Harra, L. K., Williams, D. R., & Kraev, E. 2005, A&A, 436, 1041 Google Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23 CrossRefGoogle Scholar
Pillitteri, I., Wolk, S. J., Cohen, O., & Kashyap, V., et al. 2010, ApJ, 722, 1216 CrossRefGoogle Scholar
Pillitteri, I., Wolk, S. J., Lopez-Santiago, J., & Günther, H. M., et al. 2014, ApJ, 785, 145 CrossRefGoogle Scholar
Pillitteri, I., May, A., Micela, G., Sciortino, S., Wolk, S. J., Matsakos, T. 2015 ApJ, 805, 52 CrossRefGoogle Scholar
Poppenhaeger, K. & Wolk, S. J. 2014, A&A, 565, L1 Google Scholar
Poppenhaeger, K., Schmitt, J. H. M. M., & Wolk, S. J. 2013, ApJ, 773, 62 CrossRefGoogle Scholar
Poppenhaeger, K. & Schmitt, J. H. M. M. 2011, ApJ, 735, 59 CrossRefGoogle Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., & Désert, , et al. 2003, Nature, 422, 143 CrossRefGoogle Scholar