No CrossRef data available.
Published online by Cambridge University Press: 24 February 2011
In the Galaxy there are 67 Be X-ray binaries known to-date. Out of those, 45 host a neutron star, and for the reminder the nature of a companion is not known. None, so far, is known to host a black hole. This disparity is referred to as a missing Be – black hole X-ray binary problem. The stellar population synthesis calculations following the formation of Be X-ray binaries (Belczyński & Ziółkowski 2009) predict that the ratio of the binaries with neutron stars to the ones with black holes is rather high FNS/BH ~ 30–50. A comparison of this ratio with the number of confirmed Be – neutron star X-ray binaries (45) indicates that the expected number of Be – black hole X-ray binaries is of the order of only ~0–2. This is entirely consistent with the observed Galactic sample. Therefore, there is no problem of the missing Be+BH X-Ray Binaries for the Galaxy
In the Magellanic Clouds there are 94 Be X-ray binaries known to-date. Out of those, 60 host a neutron star. Again, none hosts a black hole. The stellar population synthesis calculations carried out specifically for the Magellanic Clouds (Ziółkowski & Belczyński 2010) predict that the ratio of the Be X-ray binaries with neutron stars to the ones with black holes is only FNS/BH ~ 10. This value is rather too low, as it implies the expected number of Be+BH X-ray binaries of the order of ~6, while none is observed. We found, that to remove the discrepancy, one has to take into account a different history of the star formation rate in the Magellanic Clouds, with the respect to the Galaxy. New stellar population synthesis calculations are currently being carried out.