Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T05:52:37.770Z Has data issue: false hasContentIssue false

The Origin of the Universal Globular Cluster Mass Function

Published online by Cambridge University Press:  01 September 2007

G. Parmentier
Affiliation:
Argelander Institut fuer Astronomie, University of Bonn, Auf dem Huegel 71, D-53121 Bonn, GermanyScientific Research Worker of Fonds National de la Recherche Scientifique, Belgium Humboldt Fellow email: gparm@astro.uni-bonn.de
G. Gilmore
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK email: gil@ast.cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence favouring a Gaussian initial mass function for systems of old globular clusters has accumulated over recent years. We show that a bell-shaped mass function may be the imprint of expulsion from protoclusters of the leftover star forming gas due to supernova activity. Owing to the corresponding weakening of its gravitational potential, a protocluster retains a fraction only of its newly formed stars. The mass fraction of bound stars extends from zero to unity depending on the star formation efficiency achieved by the protoglobular cloud. We investigate how such wide variations affect the mapping of the protoglobular cloud mass function to the initial globular cluster mass function. We conclusively demonstrate that the universality of the globular cluster mass function originates from a common protoglobular cloud mass-scale of about 106 M among galaxies. Moreover, gas removal during star formation in massive gas clouds is highlighted as the likely prime cause of the predominance of field stars in the Galactic Halo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baumgardt, H. & Makino, J. 2003, MNRAS 340, 227CrossRefGoogle Scholar
Boily, C. M. & Kroupa, P. 2003, MNRAS 338, 665CrossRefGoogle Scholar
Fall, S. M. & Zhang, Q. 2001, ApJ 561, 751CrossRefGoogle Scholar
Fellhauer, M. & Kroupa, P. 2005, MNRAS 630, 879Google Scholar
Geyer, M. P. & Burkert, A. 2001, MNRAS 323, 988CrossRefGoogle Scholar
Hills, J. G. 1980, ApJ 225, 986CrossRefGoogle Scholar
Kroupa, P. & Boily, C. M. 2002, MNRAS 336, 1188CrossRefGoogle Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ 285, 141CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A 41, 57Google Scholar
Parmentier, G. & Gilmore, G. 2005, MNRAS 363, 326CrossRefGoogle Scholar
Parmentier, G. & Gilmore, G. 2007, MNRAS 377, 352CrossRefGoogle Scholar
Rosolowski, E. 2005, PASP 117, 1403CrossRefGoogle Scholar
Vesperini, E. 1998, MNRAS, 299, 1019CrossRefGoogle Scholar
Vesperini, E., Zepf, S. E., Kundu, A., & Ashman, K.M. 2003, ApJ 593, 760CrossRefGoogle Scholar