Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T07:57:52.816Z Has data issue: false hasContentIssue false

PAHs in Astronomy - A Review

Published online by Cambridge University Press:  01 February 2008

Farid Salama*
Affiliation:
NASA Ames Research Center, Space Science Division, Mail Stop: 245-6, Moffett Field, California 94035-1000, USA email: farid.salama@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of organic matter in space. Their contribution is invoked in a broad spectrum of astronomical observations that range from the ultraviolet to the far-infrared and cover a wide variety of objects and environments from meteorites and interplanetary dust particles to outer Solar System bodies to the interstellar medium in the local Milky Way and in other galaxies. Extensive efforts have been devoted in the past two decades to experimental, theoretical, and observational studies of PAHs. A brief review is given here of the evidence obtained so far for the contribution of PAHs to the phenomena aforementioned. An attempt is made to distinguish the cases where solid evidence is available from cases where reasonable assumptions can be made to the cases where the presence - or the absence - of PAHs is purely speculative at this point.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allamandola, L. J., Hudgins, D., & Sandford, S.A. 1999, ApJ (Letter), 511, L115CrossRefGoogle Scholar
Allamandola, L.J., Tielens, A.G., & Barker, J.R. 1985, ApJ (Letter), 290, L25CrossRefGoogle Scholar
Berné, O., Joblin, C., Rapacioli, M., Thomas, J., Cuillandre, J.-C., & Deville, Y. 2008, A&A (Letter), 479, L41Google Scholar
Biennier, L., Benidar, A., & Salama, F. 2006, Chem. Phys., 326, 445CrossRefGoogle Scholar
Biennier, L., Hammond, M., Elsila, J., Zare, R., & Salama, F. 2005, in: Lis, , Blake, & Herbst, (eds.), Astrochemistry Throughout the Universe, IAU 231 (Cambridge: UP), p. 214Google Scholar
Biennier, L., Salama, F., Allamandola, L., & Scherer, J. 2003, J. Chem. Phys., 118, 7863CrossRefGoogle Scholar
Biennier, L., Salama, F., Gupta, M., & O'Keefe, A. 2004, Chem. Phys. Lett., 387, 287CrossRefGoogle Scholar
Bréchignac, P., & Pino, T. 1999, A&A, 343, 49Google Scholar
Bréchignac, P., Pino, T., & Boudin, N. 2001, Spectrochim. Act. A., 57, 745CrossRefGoogle Scholar
Broks, B. P., Brok, W. J., Remy, J., van der Mullen, J. M., Benidar, A., Biennier, L., & Salama, F. 2005a, Phys. Rev. E, 71, 036409CrossRefGoogle Scholar
Broks, B. P., Brok, W. J., Remy, J., van der Mullen, J. M., Benidar, A., Biennier, L., & Salama, F. 2005b, Spectrochimica Acta Part B, 60, 1442CrossRefGoogle Scholar
Cami, J., Tan, X., Biennier, L., & Salama, F. 2005, in: Lis, , Blake, & Herbst, (eds.), Astrochemistry Throughout the Universe, IAU 231 (Cambridge: University Press), p. 69Google Scholar
Cami, J., Allamandola, L., Mattioda, A. et al. 2008, in preparationGoogle Scholar
Clairemidi, J., Moreels, G., & Bréchignac, P. 2007, Bull. AAS, 39, 53Google Scholar
Clemett, S., Maechling, C., Zare, R., Swan, P., & Walker, R. 1993, Science, 262, 721CrossRefGoogle Scholar
Cox, N. L. J., Cordiner, M., Ehrenfreund, P., Kaper, L., Sarre, P., Foing, B. H., Spaans, M, Cami, J, Sofia, U. J., Clayton, G. C., Gordon, K., & Salama, F. 2007, A&A, 470, 941Google Scholar
Cordiner, M. A., Cox, N. L. J., Trundle, C., Evans, C. J., Hunter, I., Przybilla, N., Bresolin, F., & Salama, F. 2008, A&A (Letter), 480, L13Google Scholar
Cruikshank, D. P., Dalton, J. B., Dalle Ore, C. M. et al. 2007, Nature, 448, 54CrossRefGoogle Scholar
Cuzzi, J. 2008, private communicationGoogle Scholar
Draine, B. T., & Li, A. 2007, ApJ, 657, 810CrossRefGoogle Scholar
Galazutdinov, G. A., Krelowski, J., & Salama, F. 2008, in preparationGoogle Scholar
Hudgins, D. M., & Allamandola, L. J. 2004, in: Witt, A.N., Clayton, G.C., & Draine, B.T. (eds.) ASP Conf. Ser. 309, Astrophysics of Dust, (San Francisco: ASP), p. 665Google Scholar
Léger, A., & Puget, J. L. 1984, A&A (Letter), 137, L5Google Scholar
Mattioda, A. L., Hudgins, D. M., & Allamandola, L. J. 2005, ApJ, 629, 1188CrossRefGoogle Scholar
Mattioda, A. L., Allamandola, L. J. et al. 2008, in preparationGoogle Scholar
Moreels, G., Clairemidi, J., Hermine, P., Bréchignac, P., & Rousselot, P. 1994, A&A, 282, 643Google Scholar
Pino, T. 1999, Ph.D. thesis, Universite d'Orsay, Paris, France.Google Scholar
Pino, T., Boudin, N., & Bréchignac, P. 1999, J. Chem. Phys., 111, 7337CrossRefGoogle Scholar
Pirali, O., Van-Oanh, N. T., Parneix, P., Vervloet, M., & Bréchignac, P. 2006, PCCP, 8, 3707CrossRefGoogle Scholar
Plows, F., Elsila, J., Zare, R., & Buseck, P. 2003, Geochim. Cosmochim. Acta, 67, 1429CrossRefGoogle Scholar
Remy, J., Biennier, L., & Salama, F. 2005, IEEE Transactions on Plasma Science, 33, 554CrossRefGoogle Scholar
Rhee, Y., Lee, T., Gudipati, M., Allamandola, L., & Head-Gordon, M. 2007, PNAS, 104, 5274CrossRefGoogle Scholar
Romanini, D., Biennier, L., Salama, F., Allamandola, L. J., & Stoeckel, F. 1999, Chem. Phys. Lett., 303, 165CrossRefGoogle Scholar
Rouillé, G., Arold, M., Staicu, A., Krasnokutski, S., Huisken, F., Henning, T., Tan, X., & Salama, F. 2007, J. Chem. Phys., 126, 174311CrossRefGoogle Scholar
Rouillé, G., Krasnokutski, S., Huisken, F., Henning, T., Sukhorukov, O., & Staicu, A. 2004, J. Chem. Phys., 120, 6028CrossRefGoogle Scholar
Salama, F. 1999, in: d'Hendecourt, L., Joblin, C. and Jones, A. (eds.), Solid Interstellar Matter: The ISO Revolution, (EDP Sciences, Springer-Verlag, Les Ullis), p. 65Google Scholar
Salama, F. 2008, in: Lemaire, J.L. & Combes, F. (eds.), Molecules in Space & Laboratory, (Observatoire de Paris & Université de Cergy-Pontoise), p. 51Google Scholar
Salama, F., Bakes, E., Allamandola, L. J., & Tielens, A. G. G. M. 1996, ApJ, 458, 621CrossRefGoogle Scholar
Snow, T., & McCall, B. 2006, ARAA, 44, 367CrossRefGoogle Scholar
Snow, T., Zukowski, D., & Massey, P. 2002, ApJ, 578, 877CrossRefGoogle Scholar
Smith, J.D.T., Draine, B.T., Dale, D.A., et al. 2007, ApJ, 656, 770CrossRefGoogle Scholar
Sukhorukov, O., Staicu, A., Diegel, E., Rouillé, G., Henning, T., & Huisken, F. 2004, Chem. Phys. Lett., 386, 259CrossRefGoogle Scholar
Tan, X., & Salama, F. 2005a, J. Chem. Phys., 122, 084318CrossRefGoogle Scholar
Tan, X., & Salama, F. 2005b, J. Chem. Phys. 123, 014312CrossRefGoogle Scholar
Tan, X., & Salama, F. 2006, Chem. Phys. Lett., 422, 518CrossRefGoogle Scholar
Thorwirth, S., Theulé, P., Gottlie, A., McCarthy, M., & Thaddeus, P. 2007, ApJ, 662, 1309CrossRefGoogle Scholar
Tielens, A. G. M., & Snow, T. P. (eds.) 1995, The Diffuse Interstellar Bands (Dordrecht: Kluwer)CrossRefGoogle Scholar
Weisman, J. L., Lee, T. J., Salama, F., & Head-Gordon, M. 2003, ApJ, 587, 256CrossRefGoogle Scholar
Witt, A. N., Mandel, S., Sell, P. H., Dixon, Th., & Vijh, U. P. 2008, ApJ, in pressGoogle Scholar
Zhang, J., Pei, L., & Kong, W. 2008, J. Chem. Phys., 128, 104301CrossRefGoogle Scholar