Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T00:52:42.905Z Has data issue: false hasContentIssue false

Period variations in extrasolar transiting planet OGLE-TR-111b

Published online by Cambridge University Press:  01 May 2008

Rodrigo F. Díaz
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET- UBA)Buenos Aires, Argentina email: rodrigo@iafe.uba.ar
Patricio Rojo
Affiliation:
Department of Astronomy, Universidad de Chile, Santiago, Chile
Mario Melita
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET- UBA)Buenos Aires, Argentina email: rodrigo@iafe.uba.ar
Sergio Hoyer
Affiliation:
Department of Astronomy, Universidad de Chile, Santiago, Chile
Dante Minniti
Affiliation:
Department of Astronomy, Pontificia Universidad Católica, Casilla 306, Santiago 22, Chile Specola Vaticana, V-00120 Citta del Vaticano, Italy
Pablo J. D. Mauas
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET- UBA)Buenos Aires, Argentina email: rodrigo@iafe.uba.ar
María Teresa Ruíz
Affiliation:
Department of Astronomy, Universidad de Chile, Santiago, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two consecutive transits of planetary companion OGLE-TR-111b were observed in the I band. Combining these observations with data from the literature, we find that the timing of the transits cannot be explained by a constant period, and that the observed variations cannot be originated by the presence of a satellite. However, a perturbing planet with the mass of the Earth in an exterior orbit could explain the observations if the orbit of OGLE-TR-111b is eccentric. We also show that the eccentricity needed to explain the observations is not ruled out by the radial velocity data found in the literature.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alard, C. 2000, A&AS, 144, 363Google Scholar
Alard, C. & Lupton, R. H. 1998, ApJ, 503, 325CrossRefGoogle Scholar
Chambers, J. E. 1999, MNRAS, 304, 793CrossRefGoogle Scholar
Claret, A. 2000, A&A, 363, 1081Google Scholar
Díaz, R. F., Rojo, P., & Melita, M., et al. 2008, ApJ (Letters), in press (astro-ph/0806.1229)Google Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375CrossRefGoogle Scholar
Kovács, G., Bakos, G., & Noyes, R. W. 2005, MNRAS, 356, 557CrossRefGoogle Scholar
Mandel, K. & Agol, E. 2002, ApJ (Letters), 580, L171CrossRefGoogle Scholar
Melo, C., Santos, N. C., & Pont, F., et al. 2006, A&A, 460, 251Google Scholar
Minniti, D., Fernández, J. M., & Díaz, R. F., et al. 2007, ApJ, 660, 858CrossRefGoogle Scholar
Nelder, J. & Mead, R. 1965, The Computer Journal, 7, 308CrossRefGoogle Scholar
Pont, F., Bouchy, F., & Queloz, D., et al. 2004, A&A, 426, L15Google Scholar
Santos, N. C., Pont, F., & Melo, C., et al. 2006, A&A, 450, 825Google Scholar
Stetson, P. B. 1987, PASP, 99, 191CrossRefGoogle Scholar
Udalski, A., Szewczyk, O., & Zebrun, K., et al. 2002, AcA, 52, 317Google Scholar
Winn, J. N., Holman, M. J., & Fuentes, C. I. 2007, AJ, 133, 11CrossRefGoogle Scholar