Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T22:03:54.840Z Has data issue: true hasContentIssue false

PFSS-Based Solar Wind Forecast and the Radius of the Source-Surface

Published online by Cambridge University Press:  24 July 2018

Ljubomir Nikolić*
Affiliation:
Canadian Hazards Information Service, Natural Resources Canada, 2617 Anderson Road, Ottawa, ON, K1A 0E7, Canada email: ljubomir.nikolic@canada.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The potential-field source-surface (PFSS) model of the solar corona is a widely used tool in the space weather research and operations. In particular, the PFSS model is used in solar wind forecast models which empirically associate solar wind properties with the numerically derived coronal magnetic field. In the PFSS model, the spherical surface where magnetic field lines are forced to open is typically placed at 2.5 solar radii. However, the results presented here suggest that setting this surface (the source-surface) to lower heights can provide a better agreement between observed and modelled coronal holes during the current solar cycle. Furthermore, the lower heights of the source-surface provide a better match between observed and forecasted solar wind speed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Altschuler, M. D. & Newkirk, G. 1969, Solar Phys., 9, 131CrossRefGoogle Scholar
Arden, W. M., Norton, A. A. & Sun, X. 2014, J. Geophys. Res. Space Physics, 119, 1476Google Scholar
Arge, C. N., Odstrcil, D. & Pizzo, V. J. 2003, in: Velli, M., Bruno, R. & Malara, F. (eds.), Solar Wind Ten (IP Conf. Proc. 679), p. 190Google Scholar
de Toma, G. 2011, Solar Phys., 274, 195Google Scholar
Hakamada, K., Kojima, M., Ohmi, T., Tokumaru, M. & Fujiki, K. 2005, Solar Phys., 227, 387Google Scholar
Lee, C. O., Luhmann, J. G., Hoeksema, J. T., Sun, X., Arge, C. N. & de Pater, I. 2011, Solar Phys., 269, 367CrossRefGoogle Scholar
McGregor, S. L., Hughes, W. J., Arge, C. N., Owens, M. J. & Odstrcil, D. 2011, J. Geophys. Res., 116, A03101Google Scholar
Reiss, M. A., Temmer, M., Veronig, A. M., Nikolic, L., Vennerstrom, S., Schngassner, F. & Hofmeister, S. J. 2016, Space Weather, 14, 495Google Scholar
Schatten, K. H., Wilcox, J. M. & Ness, N. F. 1969, Solar Phys., 6, 442Google Scholar
Shiota, D. & Kataoka, R. 2016, Space Weather, 14, 56Google Scholar
Steenburgh, R. A., Biesecker, D. A. & Millward, G. H. 2014, Solar Phys., 289, 675Google Scholar