Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T05:56:22.894Z Has data issue: false hasContentIssue false

Δa Photometric Survey of the Small Magellanic Cloud

Published online by Cambridge University Press:  29 August 2019

M. Zejda
Affiliation:
Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic email: zejda@physics.muni.cz
E. Paunzen
Affiliation:
Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic email: zejda@physics.muni.cz
Z. Mikulášek
Affiliation:
Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic email: zejda@physics.muni.cz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The narrow-band Δa photometric system measures the flux depression at λ5200 Å by comparing the flux at the band centre to adjacent regions. It has been shown that virtually all peculiar stars with magnetic fields (mCPs) have significant positive Δa values (of up to +100 mmag), whereas Be/Ae/B[e] and metal weak stars (including lambda Bootis types) exhibit significant negative values of Δa. By using this photometric system we are therefore able to detect chemically peculiar (CP), emission types and metal-weak stars in an efficient way. The poster presented the first results of our survey of the Small Magellanic Cloud. In the selected field we found only 0.5 % of bona fide CP stars against 15 % in our Galaxy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Kamp, I., & Paunzen, E. 2002, MNRAS, 335, L45CrossRefGoogle Scholar
Kraus, M., Liimets, T., Cappa, C. E. et al. 2017, AJ, 154, 186CrossRefGoogle Scholar
Levato, H., Miroshnichenko, A. S., & Saffe, C. 2014, A&A, 568, A28Google Scholar
Maitzen, H. M. 1976, A&A, 51, 223Google Scholar
Martinez-Galarza, J. R., Kamp, I., Su, K. Y. L., Gáspár, A., Rieke, G., & Mamajek, E.E. 2009, AJ, 694, 165CrossRefGoogle Scholar
Murphy, S. J., & Paunzen, E. 2017, MNRAS, 466, 54610.1093/mnras/stw3141CrossRefGoogle Scholar
Paul, K. T.; Subramaniam, A., Mathew, B., Mennickent, R. E., & Sabogal, B. 2012, MNRAS, 421, 3622CrossRefGoogle Scholar
Paunzen, E., Stütz, C., & Maitzen, H. M. 2005, A&A, 441, 631Google Scholar
Paunzen, E., Iliev, I.h., Pintado, O. I., et al. 2014, MNRAS, 443, 2492CrossRefGoogle Scholar
Paunzen, E., Fröhlich, H.-E., Netopil, M., Weiss, W.W., & Lüftinger, T. 2015, A&A, 574, A57Google Scholar
Paunzen, E., Janík, J., Kurfürst, P., Liška, J., Netopil, M., Skarka, M., & Zejda, M. 2017, in: Miroshnichenko, A., Zharikov, S., Korkov, D. & Wolf, M. (eds.), The B[e] Phenomenon: Forty Years of Studies, ASPCS, 508, 143Google Scholar
Udalski, A., Szymanski, M., Kubiak, M., Pietrzynski, G., Wozniak, P., & Zebrun, K. 1998, AcA, 48, 147Google Scholar
Venn, K. A., & Lambert, D. L. 1990, ApJ, 363, 23410.1086/169334CrossRefGoogle Scholar