Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T13:53:12.337Z Has data issue: false hasContentIssue false

Physics under the bonnet of a stellar evolution code

Published online by Cambridge University Press:  27 October 2016

Richard J. Stancliffe*
Affiliation:
Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany email: rjstancl@astro.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Just how good are modern stellar models? Providing a rigorous assessment of the uncertainties is difficult because of the multiplicity of input physics. Some of the ingredients are reasonably well-known (like reaction rates and opacities). Others are not so good, with convection standing out as a particularly obvious example. In some cases, it is not clear what the ingredients should be: what role do atomic diffusion, rotation, magnetic fields, etc. play in stellar evolution? All this is then compounded by computational method. In converting all this physics into something we can implement in a 1D evolution code, we are forced to make choices about the way the equations are solved, how we will treat mixing at convective boundaries, etc. All of this can impact the models one finally generates. In this review, I will attempt to assess the uncertainties associated with the ingredients and methods used by stellar evolution modellers, and what their impacts may be on the science that we wish to do.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arnett, W. D., Meakin, C., Viallet, M., et al. 2015, ApJ, in press, arXiv:1503.00342Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Annual Reviews of Astronomy & Astrophysics, 47, 481 Google Scholar
Badnell, N. R., Bautista, M. A., Butler, K., et al. 2005, MNRAS, 360, 458 Google Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608 Google Scholar
Böhm-Vitense, E. 1958, Zeitschrift für Astrophysik, 46, 108 Google Scholar
Canuto, V. M. & Mazzitelli, I. 1991, ApJ, 370, 295 CrossRefGoogle Scholar
Charbonnel, C. & Zahn, J. 2007, A&A, 467, L15 Google Scholar
Claret, A. 2007, A&A, 475, 1019 Google Scholar
Constantino, T., Campbell, S. W., Christensen-Dalsgaard, J., Lattanzio, J. C., & Stello, D. 2015, MNRAS, 452, 123 CrossRefGoogle Scholar
Eggleton, P. P. 1971, MNRAS, 151, 351 Google Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2006, Science, 314, 1580 Google Scholar
Eggleton, P. P., Faulkner, J., & Flannery, B. P. 1973, A&A, 23, 325 Google Scholar
Herwig, F. 2000, A&A, 360, 952 Google Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ, 464, 943 Google Scholar
Lattanzio, J. C., Siess, L., Church, R. P., et al. 2015, MNRAS, 446, 2673 Google Scholar
Lau, H. H. B., Stancliffe, R. J., & Tout, C. A. 2009, MNRAS, 396, 1046 Google Scholar
McSaveney, J. A., Wood, P. R., Scholz, M., Lattanzio, J. C., & Hinkle, K. H. 2007, MNRAS, 378, 1089 Google Scholar
Meynet, G., Maeder, A., & Mowlavi, N. 2004, A&A, 416, 1023 Google Scholar
Moravveji, E., Aerts, C., Pápics, P. I., Triana, S. A., & Vandoren, B. 2015, A&A, 580, A27 Google Scholar
Pasetto, S., Chiosi, C., Cropper, M., & Grebel, E. K. 2014, MNRAS, 445, 3592 Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3 CrossRefGoogle Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168 Google Scholar
Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902 Google Scholar
Salaris, M. & Cassisi, S. 2008, A&A, 487, 1075 Google Scholar
Salaris, M. & Cassisi, S. 2015, A&A, 577, A60 Google Scholar
Schröder, K.-P., Pols, O. R., & Eggleton, P. P. 1997, MNRAS, 285, 696 Google Scholar
Stancliffe, R. J. 2006, MNRAS, 370, 1817 Google Scholar
Stancliffe, R. J. 2010, MNRAS, 403, 505 Google Scholar
Stancliffe, R. J. & Eldridge, J. J. 2009, MNRAS, 396, 1699 Google Scholar
Stancliffe, R. J., Fossati, L., Passy, J.-C., & Schneider, F. R. N. 2015, A&A, 575, A117 Google Scholar
Stancliffe, R. J. & Jeffery, C. S. 2007, MNRAS, 375, 1280 Google Scholar
Stancliffe, R. J., Tout, C. A., & Pols, O. R. 2004, MNRAS, 352, 984 Google Scholar
Torres, G., Vaz, L. P. R., Sandberg Lacy, C. H., & Claret, A. 2014, AJ, 147, 36 Google Scholar
VandenBerg, D. A., Bergbusch, P. A., & Dowler, P. D. 2006, ApJS, 162, 375 Google Scholar
Viallet, M., Meakin, C., Prat, V., & Arnett, D. 2015, A&A, in press, ArXiv:1506.03100Google Scholar