Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T06:07:56.464Z Has data issue: false hasContentIssue false

Plasmoid Dominated Magnetic Reconnection and Particle Acceleration

Published online by Cambridge University Press:  20 January 2023

Arghyadeep Paul
Affiliation:
Dept. of Astronomy Astrophysics and Space Engineering Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India email: arghyadeepp@gmail.com
Sirsha Nandy
Affiliation:
Dept. of Astronomy Astrophysics and Space Engineering Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India email: arghyadeepp@gmail.com
Bhargav Vaidya
Affiliation:
Dept. of Astronomy Astrophysics and Space Engineering Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India email: arghyadeepp@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of a parallel velocity shear on the explosive phase of magnetic reconnection in a double tearing mode is investigated within the 2D resistive magneto-hydrodynamic framework. All the systems follow a three phase evolution pattern with the phases delayed in time for an increasing shear speed. We find that the theoretical dependence of the reconnection rate with shear remains true in more general scenarios such as that of a plasmoid dominated double current sheet system. We also find that the power-law distribution of plasmoid sizes become steeper with an increasing sub-Alfvénic shear. We further demonstrate the effect of a velocity shear on acceleration of test particles pertaining to the modification in the energy spectrum.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Paul, A. & Vaidya, B. 2021, Physics of Plasmas, 28, 082903. doi: 10.1063/5.0054501 Google Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, apjs, 170, 228. doi: 10.1086/513316 CrossRefGoogle Scholar
Mignone, A., Bodo, G., Vaidya, B., et al. 2018, apj, 859, 13. doi: 10.3847/1538-4357/aabccd Google Scholar
Janvier, M., Kishimoto, Y., & Li, J. Q. 2011, prl, 107, 195001. doi: 10.1103/Phys RevLett.107.195001 CrossRefGoogle Scholar
Cassak, P. A. & Otto, A. 2011, Physics of Plasmas, 18, 074501. doi: 10.1063/1.3609771 Google Scholar
Patel, R., Pant, V., Chandrashekhar, K., et al. 2020, aap, 644, A158. doi: 10.1051/0004-6361/202039000 CrossRefGoogle Scholar
Petropoulou, M., Christie, I. M., Sironi, L., et al. 2018, mnras, 475, 3797. doi: 10.1093/mnras/sty033 CrossRefGoogle Scholar
Hosseinpour, M., Chen, Y., & Zenitani, S. 2018, Physics of Plasmas, 25, 102117. doi: 10.1063/1.5061818 CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., & Fermo, R. 2013, apjl, 763, L5. doi: 10.1088/2041-8205/763/1/L5 CrossRefGoogle Scholar
Akramov, T. & Baty, H. 2017, Physics of Plasmas, 24, 082116. doi: 10.1063/1.5000273 CrossRefGoogle Scholar
Huang, Y.-M. & Bhattacharjee, A. 2010, Physics of Plasmas, 17, 062104. doi: 10.1063/1.3420208 CrossRefGoogle Scholar
Daughton, W., Scudder, J., & Karimabadi, H. 2006, Physics of Plasmas, 13, 072101. doi: 10.1063/1.2218817 CrossRefGoogle Scholar
Crooker, N. U., Siscoe, G. L., Shodhan, S., et al. 1993, jgr, 98, 9371. doi: 10.1029/93JA00636 CrossRefGoogle Scholar
Mann, G., Warmuth, A., & Aurass, H. 2009, aap, 494, 669. doi: 10.1051/0004-6361:200810099 CrossRefGoogle Scholar
Krasheninnikov, S. I. 1999, APS Division of Plasma Physics Meeting AbstractsGoogle Scholar