Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T12:09:51.717Z Has data issue: false hasContentIssue false

Polarimetric measurements in prominences and “tornadoes” observed by THEMIS

Published online by Cambridge University Press:  24 July 2015

Brigitte Schmieder
Affiliation:
Observatoire de Paris, Meudon 92195, France email: brigitte.schmieder@obspm.fr
Arturo López Ariste
Affiliation:
IRAP, Toulouse, France, email: Arturo.LopezAriste@irap.omp.eu
Peter Levens
Affiliation:
Observatoire de Paris, Meudon 92195, France email: brigitte.schmieder@obspm.fr University of Glasgow, Scotland, UK
Nicolas Labrosse
Affiliation:
University of Glasgow, Scotland, UK
Kévin Dalmasse
Affiliation:
Observatoire de Paris, Meudon 92195, France email: brigitte.schmieder@obspm.fr CISL and HAO/NCAR Boulder, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since 2013, coordinated campaigns with the THEMIS spectropolarimeter in Tenerife and other instruments (space based: Hinode/SOT, IRIS or ground based: Sac Peak, Meudon) are organized to observe prominences. THEMIS records spectropolarimetry at the He I D3 and we use the PCA inversion technique to derive their field strength, inclination and azimuth.

All of the observed prominences are quiescent, as they were stable as filaments for at least three days and not eruptive. They present similar characteristics, they are highly dynamic and present horizontal magnetic fields. Statistically, the inclination from the local vertical is around 90 degrees, with some points around 60 and 120 degrees. The field strength is between 5 and 15 Gauss. We tested the effects of adding a turbulent field component to the horizontal field. For those pixels showing inclinations around 60 and 120 degrees, we find that such a model is compatible with the polarimetric observations. In some of these prominences, identified as “tornadoes” the field strength may reach 50 Gauss, and in the top of the tornadoes some points exhibit an inclination which cannot correspond to any model in our grid of models. We investigate different solutions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aulanier, G. & Démoulin, P. 1998, ApJ 703, 114 Google Scholar
Berger, T. 2014, in: Schmieder, B., Malherbe, J. M. & Wu, S. T. (eds.), IAU Symposium No. 300 (Cambridge: CUP), p. 15 Google Scholar
Bommier, V., Landi Degl'Innocenti, E., Leroy, J.-L., & Sahal-Bréchot, S. 1994, Solar Phys. 154, 231 Google Scholar
Casini, R., López Ariste, A., Tomczyk, S., & Lites, B. W. 2003, ApJ (Letters) 598, L67 Google Scholar
Casini, R., Bevilacqua, R. & López Ariste, A. 2005, ApJ 622, 1265 Google Scholar
Casini, R., López Ariste, A., Paletou, F., & Léger, L. 2009, ApJ 703, 114 CrossRefGoogle Scholar
Dudík, J., Aulanier, G., Schmieder, B. et al. 2008, Solar Phys. 248, 29 Google Scholar
Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M. & Heinzel, P. 2012 ApJ 761, 9 Google Scholar
Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., & Kilper, G. 2014, Space Science Review 151, 243 Google Scholar
Leroy, J. L., Bommier, V., & Sahal-Bréchot, S., 1984, Solar Phys. 83, 135 CrossRefGoogle Scholar
Levens, P., Labrosse, N., Fletcher, L., & Schmieder, B. 2015, A&A submittedGoogle Scholar
Lites, B. 2014, in:. Schmieder, B., Malherbe, J. M. & Wu, S. T. (eds.), IAU Symposium 300 (Cambridge: CUP), p. 101 Google Scholar
López Ariste, A., Rayrole, J., & Semel, M. 2000, A&AS 142, 137 Google Scholar
López Ariste, A. & Casini, R. 2002, ApJ 575, 529 Google Scholar
López Ariste, A. & Casini, R. 2005, A&A 436, 325 Google Scholar
López Ariste, A. & Aulanier, G. 2007, in: Heinzel, P., Durotovič, I., Rutten, R. (eds.), The Physics of Chromospheric Plasmas, ASP Conf. Series 368 (San Francisco: ASP), p. 291 Google Scholar
López Ariste, A., Asensio Ramos, A., Sainz, Manso, et al. 2009, A&A 501, 729 Google Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. 2010, Space Science Review 151, 333 Google Scholar
Orozco Suarez, D., Asensio Ramos, A. & Trujillo Bueno, J. 2012 ApJ (Letters) 761, L25 Google Scholar
Orozco Suarez, D., Asensio Ramos, A. & Trujillo Bueno, J. 2014 A&A 566, A46 Google Scholar
Schmieder, B., Chandra, R., Berlicki, A., & Mein, P. 2010, A&A 514, A68 Google Scholar
Schmieder, B., Tian, H., Kucera, T. et al. 2014, A&A 569, A85 Google Scholar
Schmieder, B., Kucera, T., Knizhnik, K. et al. 2013, A&A 28, 490 Google Scholar
Su, Y., Gomory, O., Veronig, A. et al. 2014, ApJ (Letters) 785, L2 CrossRefGoogle Scholar
Su, Y. & Wang, T. V 2012, ApJ (Letters) 756, L41 Google Scholar
van Ballegooijen, A. A. 2004, ApJ 612, 519 Google Scholar
van Ballegooijen, A. A. & Crammer, S. R. 2010, ApJ 711, 164 Google Scholar
Wedemeyer, S., Scullion, E., Rouppe van der Voort, L. et al. 2013, ApJ 774, 123 Google Scholar
Wedemeyer, S. & Steiner, O. 2014, PASJ 66 (SP1), S10 (1-8)Google Scholar