Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T09:19:32.077Z Has data issue: false hasContentIssue false

Probing the ISM of Heiiλ1640 emitters at z = 2–4 via MUSE

Published online by Cambridge University Press:  10 June 2020

Themiya Nanayakkara
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands email: nanayakkara@strw.leidenuniv.nl
Jarle Brinchmann
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands email: nanayakkara@strw.leidenuniv.nl Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal. email: jarle@astro.up.pt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Heiiλ1640 emission in the absence of other metal lines is the most sought-after emission line to detect and characterize metal free stellar populations. However, even recent stellar population models with sophisticated treatment of stellar evolution also lack sufficient He+ ionising photons to reproduce observed He 0.1em ii fluxes. We use VLT/MUSE GTO observations to compile a catalogue of 15 z ∼ 2–4 He ii λ1640 emitters from ∼10–30 hour pointings. We show that both He ii λ1640 detections and non-detections occupy similar distribution in UV absolute magnitudes. Rest-UV emission line analysis of our sample shows that the emission lines of our He ii λ1640 emitters are driven by star-formation in solar to moderately sub-solar (∼1/20th) metallicity conditions. However, we find that even after considering effects from binary stars, we are unable to reproduce the He ii λ1640 equivalent widths. Alternative mechanisms are necessary to compensate for the missing He+ ionising photons.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Agarwal, B., Johnson, J. L., Zackrisson, E., et al. 2016, MNRAS, 460, 4003CrossRefGoogle Scholar
Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 773508Google Scholar
Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&A, 575, A75Google Scholar
Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, A1Google Scholar
Berg, D. A., Erb, D. K., Auger, M. W., Pettini, M., & Brammer, G. B. 2018, ArXiv e-prints,arXiv:1803.02340Google Scholar
Berg, D. A., Skillman, E. D., Henry, R. B. C., Erb, D. K., & Carigi, L. 2016, ApJ, 827, 126CrossRefGoogle Scholar
Binette, L., Magris, C. G., Stasińska, G., & Bruzual, A. G. 1994, A&A, 292, 13Google Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., & McLeod, D. J. 2017, MNRAS, 466, 3612CrossRefGoogle Scholar
Casares, J., Jonker, P. G., & Israelian, G. 2017, ArXiv e-prints,arXiv:1701.07450[astro-ph.HE]Google Scholar
Cassata, P., Le Fèvre, O., Charlot, S., et al. 2013, A&A, 556, A68Google Scholar
Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058CrossRefGoogle Scholar
Epinat, B., Contini, T., Finley, H., et al. 2018, A&A, 609, A40Google Scholar
Fardal, M. A., Katz, N., Gardner, J. P., et al. 2001, ApJ, 562, 605CrossRefGoogle Scholar
Götberg, Y., de Mink, S. E., & Groh, J. H. 2017, A&A, 608, A11Google Scholar
Gräfener, G., & Vink, J. S. 2015, A&A, 578, L2Google Scholar
Gutkin, J., Charlot, S., & Bruzual, G. 2016, MNRAS, 462, 1757CrossRefGoogle Scholar
Inami, H., Bacon, R., Brinchmann, J., et al. 2017, A&A, 608, A2Google Scholar
Inoue, A. K., Kousai, K., Iwata, I., et al. 2011, MNRAS, 411, 2336CrossRefGoogle Scholar
Izotov, Y. I., Thuan, T. X., & Privon, G. 2012, MNRAS, 427, 1229CrossRefGoogle Scholar
Kacprzak, G. G., van de Voort, F., Glazebrook, K., et al. 2016, ApJL, 826, L11CrossRefGoogle Scholar
Kewley, L. J., Yuan, T., Nanayakkara, T., et al. 2016, ApJ, 819, 100CrossRefGoogle Scholar
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415CrossRefGoogle Scholar
Marino, R. A., Cantalupo, S., Lilly, S. J., et al. 2018, ApJ, 859, 53CrossRefGoogle Scholar
Matthee, J., Sobral, D., Boone, F., et al. 2017, ApJ, 851, 14510.3847/1538-4357/aa9931CrossRefGoogle Scholar
Naidu, R. P., Oesch, P. A., Reddy, N., et al. 2017, ApJ, 847, 12CrossRefGoogle Scholar
Nanayakkara, T., Brinchmann, J., & The MUSE Collaboration. 2018, arXiv e-prints,arXiv:1809.10970Google Scholar
Nanayakkara, T., Glazebrook, K., Kacprzak, G. G., et al. 2016, ApJ, 828, 21CrossRefGoogle Scholar
. 2017, MNRAS, 468, 3071CrossRefGoogle Scholar
Patrcio, V., Richard, J., Verhamme, A., et al. 2016, MNRAS, 456, 4191CrossRefGoogle Scholar
Raiter, A., Schaerer, D., & Fosbury, R. A. E. 2010, A&A, 523, A64Google Scholar
Senchyna, P., Stark, D. P., Vidal-Garca, A., et al. 2017, ArXiv e-prints,arXiv:1706.00881Google Scholar
Shibuya, T., Ouchi, M., Harikane, Y., et al. 2017, ArXiv e-prints,arXiv:1705.00733Google Scholar
Shirazi, M., & Brinchmann, J. 2012, MNRAS, 421, 1043CrossRefGoogle Scholar
Sobral, D., Matthee, J., Darvish, B., et al. 2015, ApJ, 808, 139CrossRefGoogle Scholar
Sobral, D., Matthee, J., Brammer, G., et al. 2018, MNRAS, 2683Google Scholar
Steidel, C. C., Strom, A. L., Pettini, M., et al. 2016, ApJ, 826, 159CrossRefGoogle Scholar
Strom, A. L., Steidel, C. C., Rudie, G. C., et al. 2017, ApJ, 836, 164CrossRefGoogle Scholar
Tumlinson, J., Shull, J. M., & Venkatesan, A. 2003, ApJ, 584, 60810.1086/345737CrossRefGoogle Scholar
Xiao, L., Stanway, E. R., & Eldridge, J. J. 2018, MNRAS, 477, 904CrossRefGoogle Scholar
Yang, Y., Zabludoff, A. I, Davé, R., et al. 2006, ApJ, 640, 539CrossRefGoogle Scholar