Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T00:14:35.216Z Has data issue: false hasContentIssue false

Pulsars in gamma rays: What Fermi is teaching us

Published online by Cambridge University Press:  20 March 2013

Matthew Kerr
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA email: kerrm@stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 2nd Fermi-LAT pulsar catalog includes 117 γ-ray pulsars, of which roughly one third are millisecond pulsars (MSPs) while the remaining two thirds split evenly into young radio-loud and radio-quiet pulsars. Although this large population will enable future, detailed studies of emission mechanisms and the evolution of the underlying neutron star population, some nearly-universal properties are already clear and unequivocal. We discuss some of these aspects below, including the altitude of the γ-ray emission site, the shape of the γ-ray spectrum, and the implications of the latter for the radiation mechanism.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., et al. 2009a, Science, 325, 848CrossRefGoogle Scholar
Abdo, A. A., et al. 2009b, Science, 325, 840CrossRefGoogle Scholar
Abdo, A. A., et al. 2010a, ApJ, 720, 272Google Scholar
Abdo, A. A., et al. 2010b, ApJS, 187, 460Google Scholar
Abdo, A. A., et al. 2010c, ApJ, 713, 154CrossRefGoogle Scholar
Aleksić, J., et al. 2011, ApJ, 742, 43Google Scholar
Aliu, E., et al. 2011, Science, 334, 69Google Scholar
Arons, J. & Scharlemann, E. T. 1979, ApJ, 231, 854CrossRefGoogle Scholar
Bai, X.-N. & Spitkovsky, A. 2010, ApJ, 715, 1282CrossRefGoogle Scholar
Baring, M. G. 2004, Advances in Space Research, 33, 552Google Scholar
Guillemot, L., et al. 2012, ApJ, 744, 33Google Scholar
Hankins, T. H., Kern, J. S., Weatherall, J. C., & Eilek, J. A. 2003, Nature, 422, 141Google Scholar
Harding, A. K. 1991, Science, 251, 1033Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., et al. 1968, Nature, 217, 709Google Scholar
Jackson, J. D. 1998, Classical Electrodynamics, 3rd EditionGoogle Scholar
Kerr, M. 2011, ApJ, 732, 38Google Scholar
Kuiper, L., Hermsen, W., Krijger, J. M., et al. 1999, A&A, 351, 119Google Scholar
Lyutikov, M., Otte, N., & McCann, A. 2012, ApJ, 754, 33Google Scholar
Morini, M. 1983, MNRAS, 202, 495Google Scholar
Muslimov, A. G. & Harding, A. K. 2003, ApJ, 588, 430Google Scholar
Pilia, M., et al. 2010, ApJ, 723, 707Google Scholar
Romani, R. W. & Yadigaroglu, I.-A. 1995, ApJ, 438, 314Google Scholar
Watters, K. P., Romani, R. W., Weltevrede, P., & Johnston, S. 2009, ApJ, 695, 1289CrossRefGoogle Scholar