Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T15:00:43.395Z Has data issue: false hasContentIssue false

Radiative properties of the first galaxies: Rapid transition from blue to red

Published online by Cambridge University Press:  10 June 2020

Shohei Arata
Affiliation:
Theoretical Astrophysics, Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan email: arata@astro-osaka.jp
Hidenobu Yajima
Affiliation:
Center for Computational Sciences University of Tsukuba, Ibaraki305-8577, Japan
Kentaro Nagamine
Affiliation:
Theoretical Astrophysics, Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan email: arata@astro-osaka.jp Department of Physics & Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV89154-4002, USA Kavli IPMU (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
Yuexing Li
Affiliation:
Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA16802, USA
Sadegh Khochfar
Affiliation:
SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Combining cosmological hydrodynamic simulations and radiative transfer (RT) calculations, we present predictions of multi-wavelength radiative properties of the first galaxies at z ∼ 6–5. We find that intermittent star formation due to supernova (SN) feedback causes the escape fraction of UV photons to fluctuate rapidly, which then produces the observed diversity of SEDs for high-z galaxies. The simulated galaxies make rapid transition between UV-bright and IR-bright phase, and our RT calculations suggest that dust temperatures in the first galaxies are higher than z < 3 galaxies with ∼ 60 K.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Trenti, M., Labbé, I., Bradley, L., Carollo, M., van Dokkum, P. G., et al. 2015, ApJ, 803, 34CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nature, 557, 392CrossRefGoogle Scholar
Arata, S., Yajima, H., Nagamine, K., Li, Y., & Khochfar, S. 2018, arXiv:1810.07621Google Scholar
Yajima, H., Nagamine, K., Zhu, Q., Khochfar, S., & Dalla Vecchia, C. 2017, ApJ, 846, 30CrossRefGoogle Scholar
Li, Y., Hopkins, P. F., Hernquist, L., Finkbeiner, D. P., Cox, T. J., Springel, V., Jiang, L., Fan, X., & Yoshida, N. 2008, ApJ, 678, 41CrossRefGoogle Scholar
Yajima, H., Li, Y., Zhu, Q., & Abel, T. 2012, MNRAS, 424, 88410.1111/j.1365-2966.2012.21228.xCrossRefGoogle Scholar
Kawamata, R., Ishigaki, M., Shimasaku, K., Oguri, M., Ouchi, M., & Tanigawa, S. 2018, ApJ, 855, 410.3847/1538-4357/aaa6cfCrossRefGoogle Scholar