Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:48:11.504Z Has data issue: false hasContentIssue false

Radio Observations of Supernova 1987A

Published online by Cambridge University Press:  29 January 2014

L. Staveley-Smith
Affiliation:
International Centre for Radio Astronomy Research, University of Western Australia, Crawley, WA 6009, Australia email: Lister.Staveley-Smith@icrar.org ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
T. M. Potter
Affiliation:
International Centre for Radio Astronomy Research, University of Western Australia, Crawley, WA 6009, Australia email: Lister.Staveley-Smith@icrar.org
G. Zanardo
Affiliation:
International Centre for Radio Astronomy Research, University of Western Australia, Crawley, WA 6009, Australia email: Lister.Staveley-Smith@icrar.org
B. M. Gaensler
Affiliation:
ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) Sydney Institute of Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
C.-Y. Ng
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae and their remnants are believed to be prodigious sources of Galactic cosmic rays and interstellar dust. Understanding the mechanisms behind their surprisingly high production rate is helped by the study of nearby young supernova remnants. There has been none better in modern times than SN1987A, for which radio observations have been made for over a quarter of a century. We review extensive observations made with the Australia Telescope Compact Array (ATCA) at centimetre wavelengths. Emission at frequencies from 1 to 100 GHz is dominated by synchrotron radiation from an outer shock front which has been growing exponentially in strength from day 3000, and is currently sweeping around the circumstellar ring at about 4000 km s−1. Three dimensional models of the propagation of the shock into the circumstellar medium are able to reproduce the main observational features of the remnant, and their evolution. We find that up to 4% of the electrons encountered by the shock are accelerated to relativistic energies. High-frequency ALMA observations will break new ground in the understanding of dust and molecule production.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Berezhko, E. G. & Ksenofontov, L. T. 2006, ApJ, 650, 59Google Scholar
Borkowski, K. J., Blondin, J. M., & McCray, R. 1997, ApJ, 476, 31CrossRefGoogle Scholar
Chevalier, R. A. 1982, ApJ, 259, 302CrossRefGoogle Scholar
Chevalier, R. A. & Dwarkadas, V. V. 1995, ApJ, 452, L45CrossRefGoogle Scholar
Crotts, A. P. S., Kunkel, W. E., & McCarthy, P. J. 1989, ApJ, 347, 61CrossRefGoogle Scholar
Helder, E. A., Broos, P. S., Dewey, D., Dwek, E., McCray, R., Park, S., Racusin, J. L., Zhekov, S. A., & Burrows, D. N. 2013, ApJ, 764, 11CrossRefGoogle Scholar
Manchester, R. N., Gaensler, B. M., Wheaton, V. C., Staveley-Smith, L., Tzioumis, A. K., Bizunok, N. S., Kesteven, M. J., & Reynolds, J. E. 2002, PASA, 19, 207CrossRefGoogle Scholar
Matsuura, M.et al. 2010, Science, 333, 1258CrossRefGoogle Scholar
Ng, C.-Y., Gaensler, B. M., Staveley-Smith, L., Manchester, R. N., Kesteven, M. J., Ball, L., & Tzioumis, A. K. 2008, ApJ, 684, 481CrossRefGoogle Scholar
Panagia, N., Gilmozzi, R., Macchetto, F., Adorf, H.-M., & Kirshner, R. P. 1991, ApJ, 380, 23CrossRefGoogle Scholar
Potter, T. M. 2012, Radio Observations and Multi-dimensional Simulations of the Expanding Remnant of SN1987A, Ph.D thesis, University of Western AustraliaGoogle Scholar
Potter, T. M., Staveley-Smith, L., Ng, C.-Y., Ball, L., Gaensler, B. M., Kesteven, M. J., Manchester, R. N., Tzioumis, A. K., & Zanardo, G. 2009, ApJ, 705, 261Google Scholar
Staveley-Smith, L., Manchester, R. N., Kesteven, M. J., Reynolds, J. E., Tzioumis, A. K., Killeen, N. E. B., Jauncey, D. L., Campbell-Wilson, D., Crawford, D. F., & Turtle, A. J. 1992, Nature, 355, 147Google Scholar
Storey, M. C. & Manchester, R. N. 1987, Nature, 329, 421Google Scholar
Turtle, A. J., Campbell-Wilson, D., Bunton, J. D., Jauncey, D. L., Kesteven, M. J., Manchester, R. N., Norris, R. P., Storey, M. C., & Reynolds, J. E. 1987, Nature, 327, 38CrossRefGoogle Scholar
Vissani, F., Costantini, M. L., Fulgione, W., Ianni, A., & Pagliaroli, G. 2010, in Frontier Objects in Astrophysics and Particle Physics, 2010 Vulcano workshop, arXiv:1008.4726Google Scholar
Wampler, E. J., Wang, L., Baade, D., Banse, K., D'Odorico, S., Gouiffes, C., & Tarenghi, M. 1990, ApJ, 362, 13CrossRefGoogle Scholar
Zanardo, G., Staveley-Smith, L., Ball, L., Gaensler, B. M., Kesteven, M. J., Manchester, R. N., Ng, C.-Y., Tzioumis, A. K., & Potter, T. M. 2010, ApJ, 710, 1515Google Scholar
Zanardo, G., Staveley-Smith, L., Ng, C.-Y., Gaensler, B. M., Potter, T. M., Manchester, R. N., & Tzioumis, A. K. 2013, ApJ, 767, 98CrossRefGoogle Scholar