Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T16:51:25.343Z Has data issue: false hasContentIssue false

The Radius Estimation of Double Pulsar PSR J0737-3039A

Published online by Cambridge University Press:  21 February 2013

H. H. Zhao
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China email: zhaohh@ihep.ac.cn
L. M. Song
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China email: zhaohh@ihep.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the radius of the recycled pulsar in double pulsar PSR J0737-3039. In the standard accretion spin-up model, the recycled pulsar spin up continues until arriving at a minimum spin period, or so-called “equilibrium period”, which is related to stellar magnetic field, accretion rate, mass and radius. If present spin period is much longer than that at birth, the spin-down age can give the realistic true age estimation for normal pulsar J0737-3039B. Base on the above conditions, we estimate the radius of millisecond pulsar (MSP) J0737-3039A by assuming its true age is same as the spin-down age of its companion J0737-3039B. We obtained that the radius of J0737-3039A ranges approximately from 5 to 27 km.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alpar, M. A., Cheng, A. F., Ruderman, M. A., et al. 1982, Nature, 300, 728Google Scholar
Bhattacharya, D., & van den Heuvel, E. P. J. 1991, Phys. Rep, 203, 1CrossRefGoogle Scholar
Camilo, F., Thorsett, S. E., & KulKarni, S. R. 1994, ApJ, L15, 421Google Scholar
Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. 2007, Neutron Stars: Equation of State and Structure, Springer and BerlinGoogle Scholar
Haensel, P., Zdunik, J., & Bejger, M. 2008, New Astronomy Review., 51, 785CrossRefGoogle Scholar
van den Heuvel, E. P. J. 2004, Science, 303, 20CrossRefGoogle Scholar
Kramer, M., et al. 2006, Science, 314, 97Google Scholar
Kramer, M. & Stairs, I. H. 2008, ARAA, 46, 541Google Scholar
Lattimer, J. M. & Prakash, M. 2004, Science, 304, 536CrossRefGoogle Scholar
Lattimer, J. M. 2011, Astrophys Space Sci., 336, 67Google Scholar
Lyne, A. G., et al. 2004, Science, 303, 1153CrossRefGoogle Scholar
Lyne, A. G. 2006, AA, Suppl. 2, 162Google Scholar
Miller, M. C. 2002, Nature, 420, 31Google Scholar
Tauris, T. M., Langer, N., & Kramer, M. 2012, MNRAS, 425, 1601CrossRefGoogle Scholar
Wang, J., et al. 2011, AA, 526, A88Google Scholar
Zhang, C. M. & Kojima, Y. 2006, MNRAS, 366, 137CrossRefGoogle Scholar
Zhang, C. M., et al. 2007, MNRAS, 374, 232CrossRefGoogle Scholar
Zhang, C. M., et al. 2011, AA, 527, 83Google Scholar