Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T04:33:33.140Z Has data issue: false hasContentIssue false

The rapid evolution of dust content in galaxies over the last five billion years

Published online by Cambridge University Press:  21 March 2013

H. L. Gomez
Affiliation:
School of Physics & Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK email: haley.gomez@astro.cf.ac.uk
L. Dunne
Affiliation:
Dept of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand email: loretta.dunne@canterbury.ac.nz
D. J. B. Smith
Affiliation:
Centre for Astrophysics, Science & Technology Research Institute, University of Hertfordshire, Hatfield, Herts, AL10 9AB, UK email: smith@herts.ac.uk
E. da Cunha
Affiliation:
Max-Planck Institute for Astronomy, Königstuhl 17, 60115 Heidelberg, Germany email: cunha@mpia-hd.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Herschel-ATLAS (H-ATLAS) will provide an unrivalled sample of galaxies, probing the normal star-forming submillimetre population of galaxies for the first time. Here, we exploit the Science Demonstration Phase (SDP) data to model the evolution of the interstellar content of galaxies in recent history. The most massive H-ATLAS galaxies show a large increase in the dust content five billion years ago compared to the present epoch. These observations are difficult to explain using standard dust models, one possibility could be contributions from a non-stellar source of dust e.g. grain growth in dense clouds; this would imply that less than 10% of dust would be condensed in stellar atmospheres. Alternatively, an initial mass function which becomes top heavy at high star formation rate densities could also explain this discrepancy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Braun, R., Popping, A., Brooks, K., & Combes, F., 2011, MNRAS, 416, 2600Google Scholar
da Cunha, E., Charlot, S., & Elbaz, D., 2008 MNRAS, 388, 1595Google Scholar
da Cunha, E., Eminian, C., Charlot, S., & Blaizot, J., 2010, MNRAS, 403, 1894CrossRefGoogle Scholar
Draine, B. T., 2009, in Cosmic Dust - Near and Far ASP Vol. 414, p.453Google Scholar
Driver, S. P., Hill, D. T., Kelvin, L. S., et al. 2011, MNRAS, 413, 971CrossRefGoogle Scholar
Dunne, L., Gomez, H. L., da Cunha, E., et al. 2011, MNRAS 417 1510, D11CrossRefGoogle Scholar
Eales, S. A., Dunne, L., Clements, D., et al. 2010, PASP, 122, 499CrossRefGoogle Scholar
Hopkins, A. M., 2004, ApJ, 615, 209Google Scholar
Morgan, H. L. & Edmunds, M. G., 2003, MNRAS, 343, 427CrossRefGoogle Scholar
Papadopoulos, P. P., Thi, W.-F., Miniati, F., & Viti, S., 2011, MNRAS, 414, 1705Google Scholar
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A & A, 518, L1CrossRefGoogle Scholar
Rigby, E. E., Maddox, S. J., & Dunne, L., MNRAS, 415, 2336Google Scholar
Smith, D. J. B., Dunne, L., Maddox, S., et al. 2011, MNRAS, 416, 857CrossRefGoogle Scholar
Smith, D. J. B., Dunne, L., da Cunha, E., et al. 2012b, MNRAS, in press, arXiv: 1208.3079Google Scholar
Todini, P. & Ferrara, A., 2001, MNRAS, 325, 726CrossRefGoogle Scholar