Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T08:49:44.109Z Has data issue: false hasContentIssue false

Retrograde resonances in compact multi-planetary systems: a feasible stabilizing mechanism

Published online by Cambridge University Press:  01 October 2007

Julie Gayon
Affiliation:
Université Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, B.P. 4229, F-06304 Nice Cedex 4, France email: julie.gayon@oca.eu - eric.bois@oca.eu
Eric Bois
Affiliation:
Université Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, B.P. 4229, F-06304 Nice Cedex 4, France email: julie.gayon@oca.eu - eric.bois@oca.eu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multi-planet systems detected until now are in most cases characterized by hot-Jupiters close to their central star as well as high eccentricities. As a consequence, from a dynamical point of view, compact multi-planetary systems form a variety of the general N-body problem (with N ≥ 3), whose solutions are not necessarily known. Extrasolar planets are up to now found in prograde (i.e. direct) orbital motions about their host star and often in mean-motion resonances (MMR). In the present paper, we investigate a theoretical alternative suitable for the stability of compact multi-planetary systems. When the outer planet moves on a retrograde orbit in MMR with respect to the inner planet, we find that the so-called retrograde resonances present fine and characteristic structures particularly relevant for dynamical stability. We show that retrograde resonances and their resources open a family of stabilizing mechanisms involving specific behaviors of apsidal precessions. We also point up that for particular orbital data, retrograde MMRs may provide more robust stability compared to the corresponding prograde MMRs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bois, E., Kiseleva-Eggleton, L., Rambaux, N., & Pilat-Lohinger, E. 2003, ApJ, 598, 1312CrossRefGoogle Scholar
Cincotta, P. & Simó, C. 2000, A&AS, 147, 205Google Scholar
Correia, A. C. M., Udry, S., Mayor, M., Laskar, J., Naef, D., Pepe, F., Queloz, D., Santos, N. C., 2006, A&A, 440, 751Google Scholar
Ferraz-Mello, S., Michtchenko, T. A., Beaugé, C., & Callegari, N. 2005, Lecture Notes in Physics, 683, 219CrossRefGoogle Scholar
Gayon, J. & Bois, E. 2008, A&A, accepted, [arXiv:0801.1089v2]Google Scholar
Gayon, J., Bois, E., & Scholl, H. 2008, Celestial Mechanics and Dynamical Astronomy, Special Issue : “Theory and Applications of Dynamical Systems”, to be submittedGoogle Scholar
Ji, J., Kinoshita, H., Liu, L., Li, G., & Nakai, H. 2003, Celestial Mechanics and Dynamical Astronomy, 87, 113CrossRefGoogle Scholar
Laskar, J. 1993, Physica D, 67, 257CrossRefGoogle Scholar
Lee, M. H. & Peale, S. J. 2002, ApJ, 567, 596CrossRefGoogle Scholar
Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., Burnet, M., 2004, A&A, 415, 391Google Scholar
Marzari, F., Scholl, H., & Tricarico, P. 2006, A&A, 453, 341Google Scholar
McCarthy, C., Butler, R. P., Tinney, C. G., Jones, H. R. A., Marcy, G. W., Carter, B., Penny, A. J., & Fischer, D. A. 2004, ApJ, 617, 575CrossRefGoogle Scholar
Pepe, F., Correia, A. C. M., Mayor, M., Tamuz, O., Couetdic, J., Benz, W., Bertaux, J.-L., Bouchy, F., Laskar, J., Lovis, C., Naef, D., Queloz, D., Santos, N. C., Sivan, J.-P., Sosnowska, D., & Udry, S. 2007, A&A, 462, 769Google Scholar
Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R. A., Laughlin, G., Carter, B. D, Bailey, J. A., & O'Toole, S. 2006, ApJ, 647, 594CrossRefGoogle Scholar
Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Henry, G. W., Laughlin, G., Wright, J. T., Johnson, J. A., 2005, ApJ, 632, 638CrossRefGoogle Scholar