Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:53:22.967Z Has data issue: false hasContentIssue false

The role of accretion disks in the formation of massive stars

Published online by Cambridge University Press:  27 April 2011

R. Kuiper
Affiliation:
Argelander-Institut für Astronomie, Rheinische Friedrich-Wilhelms-Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany email: kuiper@astro.uni-bonn.de Max-Planck-Institut für Astronomie, Königstuhl 17, D-68169 Heidelberg, Germany
H. Klahr
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-68169 Heidelberg, Germany
H. Beuther
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-68169 Heidelberg, Germany
Th. Henning
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-68169 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 105 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presumed from observations. For an initial mass of the pre-stellar host core of 60, 120, 240, and 480⊙ the masses of the final stars formed in our simulations add up to 28.2, 56.5, 92.6, and at least 137.2⊙ respectively.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Kahn, F. D. 1974, A&A, 37, 149Google Scholar
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham, A. J. 2009, Science, 323, 754CrossRefGoogle Scholar
Kuiper, R., Klahr, H., Dullemond, C., Kley, W., & Henning, T. 2010 a, A&A, 511, 81Google Scholar
Kuiper, R., Z ZKlahr, H., Beuther, H., & Henning, T. 2010 b, ApJ, in pressGoogle Scholar
Larson, R. B. & Starrfield, S. 1971, A&A, 13, 190Google Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228Google Scholar
Nakano, T. 1989, ApJ, 345, 464Google Scholar
Shu, F. H., Lizano, S., & Adams, F. C. 1987, in: Star forming regions, ed. Peimbert, M., J. Jugaku, 115, 417Google Scholar
Yorke, H. W. & Krügel, E. 1977, A&A, 54, 183Google Scholar
Yorke, H. W. & Sonnhalter, C. 2002, ApJ, 569, 846Google Scholar