Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:58:38.946Z Has data issue: false hasContentIssue false

Satellites are the main drivers of environmental effects at least to z = 0.7

Published online by Cambridge University Press:  12 October 2016

Katarina Kovač
Affiliation:
Institute for Astronomy, ETH Zurich, Zurich 8093, Switzerland email: kovac@phys.astro.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the role of environment in the evolution of galaxies up to z = 0.7 using the final zCOSMOS-bright data set. We use the colour as a proxy for the quenched population, and measure the dependence of the red fraction of galaxies on stellar mass and two environmental indicators: the local overdensity of galaxies δ and a demarcation of galaxies to centrals and satellites. The analysis is carried out by quantifying the role of different quenching processes. We find that the measured dependence of the red fraction of galaxies on stellar mass and environment can be well described by two quenching processes: one related only to stellar mass (mass quenching) and the other related to the local environment (environment quenching). Within the errors, these processes are independent of each other, and consistent with the z ~ 0 measurement. Moreover, the red fraction of centrals fr,cen (both singleton centrals and centrals in the groups) does not show any trend with δ and more than 95% of fr,cen is consistent with being produced through the mass quenching alone. The satellite galaxies are redder than the centrals at the same stellar mass and δ, requiring additional environment quenching. Given the observed fractional distribution of satellites at different overdensities, the normalized excess in the red fraction of satellites with respect to the red fraction of centrals is consistent with a scenario in which the satellites account for most of the δ-dependences observed in the overall population of galaxies covering 0.1 < z < 0.7.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bamford, S. P., & Budavari, T., 2006, MNRAS, 373, 469 Google Scholar
Boselli, A. & Gavazzi, G., 2006, PASP, 118, 517 Google Scholar
Capak, P. et al., 2007, ApJS, 172, 99 Google Scholar
Cooper, M. C. et al., 2010, MNRAS, 409, 337 Google Scholar
Cucciati, O. et al., 2010, A&A, 524, A2 Google Scholar
Dressler, A., 1980, ApJ, 236, 351 CrossRefGoogle Scholar
Henriques, B. M. B., White, S. D. M., Lemson, G., Thomas, P. A., Guo, Q., Marleau, G.-D., & Overzier, R. A., 2012, MNRAS, 421, 2904 Google Scholar
Kauffmann, G., White, S. D. M., Heckman, T. M., Ménard, B., Brinchmann, J., Charlot, S., Tremonti, C., & Brinkmann, J., 2004, MNRAS, 353, 713 Google Scholar
Knobel, C. et al., 2012, ApJ, 753, 121 Google Scholar
Knobel, C. et al., 2013, ApJ, 769, 24 CrossRefGoogle Scholar
Knobel, C., Lilly, S. J., Woo, J., & Kovač, K., 2014, arXiv1408.2553Google Scholar
Kovač, K. et al., 2010b, ApJ, 708, 505 CrossRefGoogle Scholar
Kovač, K. et al., 2010a, ApJ, 718, 86 Google Scholar
Kovač, K. et al., 2014, MNRAS, 438, 717 Google Scholar
Lilly, S. J. et al., 2007, ApJS, 172, 70 Google Scholar
Lilly, S. J. et al., 2009, ApJS, 184, 218 Google Scholar
Peng, Y.-j. et al., 2010, ApJ, 721, 193 Google Scholar
Peng, Y.-j., Lilly, S. J., Renzini, A., & Carollo, M., 2012, ApJ, 757, 4 Google Scholar
Sanders, D. B. et al., 2007, ApJS, 172, 86 Google Scholar
Scoville, N. et al., 2007, ApJS, 172, 38 Google Scholar
Tasca, L. A. M. et al., 2009, A&A, 503, 379 Google Scholar
van den Bosch, F. C., Aquino, D., Yang, X., Mo, H. J., Pasquali, A., McIntosh, D. H., Weinmann, S. M., & Kang, X., 2008, MNRAS, 387, 79 Google Scholar