Article contents
Science with the James Webb Space Telescope
Published online by Cambridge University Press: 17 May 2006
Abstract
The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. The scientific investigations described here define the measurement capabilities of the telescope, but they do not imply that those particular observations will be made. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 1 , Symposium S232: Scientific Requirements for Extremely Large Telescopes , November 2005 , pp. 87 - 98
- Copyright
- 2006 International Astronomical Union
- 1
- Cited by